Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

309 results about "Head-related transfer function" patented technology

A head-related transfer function (HRTF) also sometimes known as the anatomical transfer function (ATF) is a response that characterizes how an ear receives a sound from a point in space. As sound strikes the listener, the size and shape of the head, ears, ear canal, density of the head, size and shape of nasal and oral cavities, all transform the sound and affect how it is perceived, boosting some frequencies and attenuating others. Generally speaking, the HRTF boosts frequencies from 2–5 kHz with a primary resonance of +17 dB at 2,700 Hz. But the response curve is more complex than a single bump, affects a broad frequency spectrum, and varies significantly from person to person.

Binaural synthesis, head-related transfer functions, and uses thereof

PCT No. PCT/DK95/00089 Sec. 371 Date Dec. 27, 1996 Sec. 102(e) Date Dec. 27, 1996 PCT Filed Feb. 27, 1995 PCT Pub. No. WO95/23493 PCT Pub. Date Aug. 31, 1995A method and apparatus for simulating the transmission of sound from sound sources to the ear canals of a listener encompasses novel head-related transfer functions (HTFs), novel methods of measuring and processing HTFs, and novel methods of changing or maintaining the directions of the sound sources as perceived by the listener. The measurement methods enable the measurement and construction of HTFs for which the time domain descriptions are surprisingly short, and for which the differences between listeners are surprisingly small. The novel HTFs can be exploited in any application concerning the simulation of sound transmission, measurement, simulation, or reproduction. The invention is particularly advantageous in the field of binaural synthesis, specifically, the creation, by means of two sound sources, of the perception in the listener of listening to sound generated by a multichannel sound system. It is also particularly useful in the designing of electronic filters used, for example, in virtual reality systems, and in the designing of an "artificial head" having HTFs that approximate the HTFs of the invention as closely as possible in order to make the best possible representation of humans by the artificial head, thereby making artificial head recordings of optimal quality.
Owner:M O SLASHED LLER HENRIK +3

Perceptual synthesis of auditory scenes

An auditory scene is synthesized by applying two or more different sets of one or more spatial parameters (e.g., an inter-ear level difference (ILD), inter-ear time difference (ITD), and/or head-related transfer function (HRTF)) to two or more different frequency bands of a combined audio signal, where each different frequency band is treated as if it corresponded to a single audio source in the auditory scene. In one embodiment, the combined audio signal corresponds to the combination of two or more different source signals, where each different frequency band corresponds to a region of the combined audio signal in which one of the source signals dominates the others. In this embodiment, the different sets of spatial parameters are applied to synthesize an auditory scene comprising the different source signals. In another embodiment, the combined audio signal corresponds to the combination of the left and right audio signals of a binaural signal corresponding to an input auditory scene. In this embodiment, the different sets of spatial parameters are applied to reconstruct the input auditory scene. In either case, transmission bandwidth requirements are reduced by reducing to one the number of different audio signals that need to be transmitted to a receiver configured to synthesize/reconstruct the auditory scene.
Owner:AVAGO TECH INT SALES PTE LTD

Virtual 3D replaying method based on earphone

The invention relates to a virtual 3D replaying method based on an earphone. The method comprises the following steps: setting a parameter of a virtual 3D sound source; calculating an absorption value of air to sound and calculating a sound pressure attenuation factor of the sound; calculating a room pulse response (RIR); calculating a position distance d between each sample point of the RIR and a receiving point, calculating a sound pressure of the original sound source after being transmitted for the d distance according to the d; using a interpolation method to process an absorption coefficient of a metope frequency point so as to obtain the RIR after increasing air attenuation and metope absorption; calculating a level angle and an elevation angle between a sound source point position and a head position so as to select a proximal head correlation transmission function; carrying out convolution on head-related transfer function (HRTF) and the RIR after increasing the air attenuation and the metope absorption so as to acquire binaural room pulse response (BRIR); carrying out the convolution on the BRIR and an input sound signal so as to realize a virtual 3D sound signal based on the earphone. By using the method provided in the invention, an '' inner head '' problem during earphone replaying, a distance direction feeling problem, a room characteristic problem and the like can be solved so as to realize a virtual 3D effect based on the earphone.
Owner:INST OF ACOUSTICS CHINESE ACAD OF SCI +1
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products