Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

1215results about "Conversion involving interpolation processes" patented technology

Video, audio and graphics decode, composite and display system

A video, audio and graphics system uses multiple transport processors to receive in-band and out-of-band MPEG Transport streams, to perform PID and section filtering as well as DVB and DES decryption and to de-multiplex them. The system processes the PES into digital audio, MPEG video and message data. The system is capable of decoding multiple MPEG SLICEs concurrently. Graphics windows are blended in parallel, and blended with video using alpha blending. During graphics processing, a single-port SRAM is used equivalently as a dual-port SRAM. The video may include both analog video, e.g., NTSC / PAL / SECAM / S-video, and digital video, e.g., MPEG-2 video in SDTV or HDTV format. The system has a reduced memory mode in which video images are reduced in half in horizontal direction only during decoding. The system is capable of receiving and processing digital audio signals such as MPEG Layer 1 and Layer 2 audio and Dolby AC-3 audio, as well as PCM audio signals. The system includes a memory controller. The system includes a system bridge controller to interface a CPU with devices internal to the system as well as peripheral devices including PCI devices and I / O devices such as RAM, ROM and flash memory devices. The system is capable of displaying video and graphics in both the high definition (HD) mode and the standard definition (SD) mode. The system may output an HDTV video while converting the HDTV video and providing as another output having an SDTV format or another HDTV format.
Owner:AVAGO TECH INT SALES PTE LTD

Video, audio and graphics decode, composite and display system

A video, audio and graphics system uses multiple transport processors to receive in-band and out-of-band MPEG Transport streams, to perform PID and section filtering as well as DVB and DES decryption and to de-multiplex them. The system processes the PES into digital audio, MPEG video and message data. The system is capable of decoding multiple MPEG SLICEs concurrently. Graphics windows are blended in parallel, and blended with video using alpha blending. During graphics processing, a single-port SRAM is used equivalently as a dual-port SRAM. The video may include both analog video, e.g., NTSC / PAL / SECAM / S-video, and digital video, e.g., MPEG-2 video in SDTV or HDTV format. The system has a reduced memory mode in which video images are reduced in half in horizontal direction only during decoding. The system is capable of receiving and processing digital audio signals such as MPEG Layer 1 and Layer 2 audio and Dolby AC-3 audio, as well as PCM audio signals. The system includes a memory controller. The system includes a system bridge controller to interface a CPU with devices internal to the system as well as peripheral devices including PCI devices and I / O devices such as RAM, ROM and flash memory devices. The system is capable of displaying video and graphics in both the high definition (HD) mode and the standard definition (SD) mode. The system may output an HDTV video while converting the HDTV video and providing as another output having an SDTV format or another HDTV format.
Owner:AVAGO TECH INT SALES PTE LTD

Method for motion estimated and compensated field rate up-conversion (FRU) for video applications and device for actuating such method

A method and a device for motion estimated and compensated Field Rate Up-conversion (FRU) for video applications is disclosed and claimed. The invention provides for dividing an image field to be interpolated into a plurality of image blocks, where each image block includes a respective set of image elements of the image field. In one embodiment, for each image block of a subset of image blocks, a group of neighboring image blocks is selected. A motion vector for the image block is estimated that describes the movement of the image block from a previous image field to a current image field on the basis of predictor motion vectors associated to the group of neighboring image blocks. Each image element of the image block is determined by interpolation of two corresponding image elements in the previous and current image fields related by the estimated motion vector. To estimate a motion vector, the invention provides for applying each of the predictor motion vectors to the image block to determine a respective pair of corresponding image blocks in the previous and current image fields. For each of the pairs of corresponding image blocks, an error function which is the Sum of luminance Absolute Difference (SAD) between corresponding image elements in the pair of corresponding image blocks is evaluated. For each pair of the predictor motion vectors, a degree of homogeneity is also evaluated, followed by the application of a fuzzy rule having an activation level that is proportional to the degree of homogeneity of the pair of predictor motion vectors and the error functions of the pair of predictor motion vectors. An optimum fuzzy rule having the highest activation level is selected, from which the best predictor motion vector is determined, having the smaller error function of the pair associated to the optimum fuzzy rule. In most cases, the motion vector for the image block is estimated on the basis of the best predictor motion vector.
Owner:STMICROELECTRONICS SRL
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products