Looking for breakthrough ideas for innovation challenges? Try Patsnap Eureka!

Method for preparing ozone heterogeneous oxidation solid catalysts

A heterogeneous oxidation and solid catalyst technology, applied in the direction of heterogeneous catalyst chemical elements, physical/chemical process catalysts, metal/metal oxide/metal hydroxide catalysts, etc., can solve the problem of poor toxicity resistance and easy loss of catalysis Activity, low catalyst adsorption, etc., to achieve strong adsorption, improve anti-toxicity and catalytic activity, and inhibit melting and precipitation

Inactive Publication Date: 2017-08-18
SICHUAN NORMAL UNIVERSITY
View PDF0 Cites 0 Cited by
  • Summary
  • Abstract
  • Description
  • Claims
  • Application Information

AI Technical Summary

Problems solved by technology

[0004] In view of the problems of low catalyst adsorption, poor anti-toxicity and easy loss of catalytic activity in the current preparation method of ozone heterogeneous oxidation solid catalyst, a multi-component porous carrier was developed to enhance the adsorption of the catalyst through pore expansion and surface activation. Rare earth metal organic compounds as precursors of catalytic active additives, common transition metal organic compounds and noble metal compounds as precursors of catalytic active centers and multi-component porous carriers through hydrothermal reaction and high temperature calcination to prepare ozone heterogeneous oxidation containing multiple metals The preparation method of solid catalyst to improve the anti-toxicity and catalytic activity of the catalyst is characterized in that component A and deionized water are added into a sealable reactor and stirred to prepare an aqueous solution, and the weight concentration of component A is controlled to be 2% to 6%. After the preparation is completed, add component B under stirring, raise the temperature to 35°C-50°C, continue to stir for 3h-6h, filter, and dry the reaction product at 102°C-106°C to obtain a modified carrier for pore expansion; pore expansion Put the modified carrier into the ultrasonic reactor, add the aqueous solution prepared by C component and deionized water, the weight concentration of C component is 3%~8%, stir and mix evenly, control the ultrasonic power density to 0.3~0.8W / m 3 , frequency 20kHz ~ 30kHz, 40 ℃ ~ 55 ℃, ultrasonic vibration 2h ~ 5h, the ultrasonic surface activation carrier mixture is obtained; the ultrasonic surface activation carrier mixture is transferred to the hydrothermal reaction kettle, and then add D component and deionized water to prepare The aqueous solution, the weight concentration of D component is 40% ~ 55%, by weight, the weight ratio of D component deionized aqueous solution: ultrasonic surface activation carrier mixture = 1: (1.5 ~ 2), control temperature 120 ℃ ~ 180°C, the hydrothermal reaction time is 8h~16h, and then dried to obtain fine particles; the fine particles are burned in a muffle furnace at 600°C~950°C for 3h~8h to obtain a solid catalyst for ozone heterogeneous oxidation

Method used

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
View more

Examples

Experimental program
Comparison scheme
Effect test

Embodiment 1

[0007] Embodiment 1:1.35g lithium hypochlorite, 1.65g bis(acetylacetonate) beryllium, 140ml deionized water, join volume and be that in the sealable reactor of 500ml, stir and mix evenly, the weight concentration of this aqueous solution is 2.1%, times Lithium chlorate: the weight ratio of bis(acetylacetonate) beryllium=1:1.2; add deionized water to wash to neutral, dry at 103°C to remove moisture, and then sieve 2.75g diatoms of -200 mesh to +400 mesh standard sieve Weight of pure, 3.75g kyanite, 4.75g basalt, 5.75g langbeinite, 6.75g fly ash, 7.75g coal gangue, lithium hypochlorite and bis(acetylacetonate) beryllium (3g): porous material Weight (31.5g) = 1:10.5, heat up to 36°C, continue to stir for 3.2h, filter, dry at 103°C and obtain 31g of pore-enlarging modified carrier; in a 500ml ultrasonic reactor, put the pore-enlarging modified carrier 31g, then add 3.25g dodecyldimethylhydroxyethylammonium chloride dissolved in 100ml deionized water aqueous solution, the weight co...

Embodiment 2

[0008] Embodiment 2:0.24g lithium hypochlorite, 0.36g bis(acetylacetonate) beryllium, 10ml deionized water, join volume and be that in the sealable reactor of 100ml, stir and mix evenly, the weight concentration of this aqueous solution is 5.7%, times Lithium chlorate: the weight ratio of bis(acetylacetonate) beryllium=1:1.5; add deionized water to wash to neutral, dry at 103°C to remove moisture, and then sieve 1.45g diatoms of -200 mesh to +400 mesh standard sieve Weight of pure, 1.65g kyanite, 1.85g basalt, 2.05g langbeinite, 2.25g fly ash, 2.45g coal gangue, lithium hypochlorite and bis(acetylacetonate)beryllium (0.6g): porous material The weight (11.7g)=1:19.5, heat up to 48°C, continue to stir and react for 5.8h, filter, dry at 105°C and obtain 11.5g of pore-enlarging modified carrier; in a 100ml ultrasonic reactor, put the pore-enlarging modified Carrier 11.5g, add the aqueous solution that 2.2g dodecyl dimethyl hydroxyethyl ammonium chloride is dissolved in 26ml deioni...

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to View More

PUM

No PUM Login to View More

Abstract

The invention relates to a method for preparing ozone heterogeneous oxidation solid catalysts, and belongs to the technical field of environmental protection and chemical catalysts. The method includes carrying out pore expansion and modification on carriers which are purification diatom, kyanite, basalt, bloedite, fly ash and coal gangue porous materials by the aid of lithium hypochlorite and bis (acetylacetone) beryllium; adding chlorinated dodecyl dimethyl hydroxyethyl ammonium chloride into the carriers and carrying surface activation treatment on the carriers under the effects of ultrasonic waves; carrying out hydrothermal reaction on the carriers which are subjected to ultrasonic surface activation, borax, potassium sulfate, tri (hexafluoroacetylacetone) yttrium (III) dihydrate, promethium tricyclic pentadiene, terbium acetate hydrate, lutetium carbonate hydrate rare earth metal organic compounds, vanadium pyruvic acid isonicotinyl hydrazone, cobalt gluconate, terpyridine ruthenium chloride hexahydrate and hexachlor osmium dipotassium in hydrothermal reaction kettles under the effect of octyl cetyl trimethyl ammonium bromide which is an emulsifier; drying reaction products to remove moisture; burning the reaction products in muffle furnaces at the certain temperatures to obtain the ozone heterogeneous oxidation solid catalysts. The chlorinated dodecyl dimethyl hydroxyethyl ammonium chloride is used as a surfactant. The borax and the potassium sulfate are used as composite mineralizers, the tri (hexafluoroacetylacetone) yttrium (III) dihydrate, the promethium tricyclic pentadiene, the terbium acetate hydrate and the lutetium carbonate hydrate rare earth metal organic compounds are used as catalytic active auxiliary precursors, the vanadium pyruvic acid isonicotinyl hydrazone, the cobalt gluconate, the terpyridine ruthenium chloride hexahydrate and the hexachlor osmium dipotassium are used as catalytic active central components, the vanadium pyruvic acid isonicotinyl hydrazone is a common transition metal organic compound, and the terpyridine ruthenium chloride hexahydrate and the hexachlor osmium dipotassium are precious metal compounds.

Description

technical field [0001] The invention relates to a preparation method of a solid catalyst for ozone heterogeneous oxidation, which belongs to the technical fields of environmental protection and chemical catalysts. Background technique [0002] Ozone oxidation technology utilizes the strong oxidation ability of ozone, which can oxidize and decompose many organic pollutants, and is widely used in wastewater treatment. Ozone catalytic oxidation technology is divided into ozone homogeneous catalytic oxidation and ozone heterogeneous catalytic oxidation. Ozone homogeneous catalytic oxidation has catalysts that are difficult to separate, recycle and reuse, and the low utilization rate of ozone leads to high water treatment operation costs. Ozone heterogeneous catalytic oxidation technology has the advantages of easy separation and recovery of catalysts and reusable use, high ozone utilization rate, and high removal rate of organic pollutants, which reduces water treatment. The ad...

Claims

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to View More

Application Information

Patent Timeline
no application Login to View More
IPC IPC(8): B01J23/89B01J32/00C02F1/28C02F1/78C02F101/30
CPCC02F1/281C02F1/725C02F1/78B01J23/002B01J23/898C02F2101/30B01J2523/00B01J35/50B01J35/40B01J2523/11B01J2523/21B01J2523/13B01J2523/36B01J2523/3731B01J2523/3756B01J2523/3793B01J2523/55B01J2523/845B01J2523/821B01J2523/825
Inventor 朱明刘阳魏玉君
Owner SICHUAN NORMAL UNIVERSITY
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products