Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

82 results about "Pre crash" patented technology

In-vehicle radar device and communication device

In order to consider an optimum control method and an optimum mounting method needed, a UWB having a communication function and a radar function are used. For an obstacle vehicle in front, the distance between two cars is measured using the radar function, and according to this distance, a hazard warning is issued to a driver or a pre-crash operation is carried out. Moreover, by informing its own position to each other between vehicles using the communication function, the distance to a vehicle near to the own vehicle is measured regardless of clutter, and according to this distance, a hazard warning is issued to a driver or a pre-crash operation is carried out. Moreover, the operating frequency and transmission power of a radar are changed based on its own location information, thereby reducing influence to and from other wireless system.
Owner:CALSONIC KANSEI CORP +1

Method and apparatus for rear-end collision warning and accident mitigation

This disclosure introduces a system which generates a visual, audio, and / or tactile warning to a driver of a lead vehicle when a possible rear-end collision is detected, based on the approach of a second vehicle from a rear direction. The system may also generate a warning signal (such as quick blinking red brake light, or an array of multi-color lights) directed to the approaching vehicle when it is determined to be approaching at an unsafe speed. The system may include one or more of: approaching-vehicle-sensors mounted on the back end of the lead vehicle, a computer processing system, a set of warning lights, a set of speakers within the lead vehicle, and an antenna and transmitter / receiver for communicating with systems of other vehicles. This system may include a connection to the existing taillight system and other existing systems in the lead vehicle. Extended systems may include connections to and control of head support system, seat-belt systems and airbags system to provide additional safety to the occupants of the lead vehicle. The system may also record and store a few seconds of sensor data of the pre-crash and crash related scene when an impact occurs, and provide blind spot warnings.
Owner:XEROX CORP

System and method for minimizing occupant injury during vehicle crash events

A method, computer program product and apparatus for minimizing occupant injury by optimizing occupant restraint properties and / or actions in real time, during pre-crash and crash phases. The restraint system uses three catalogs and a database linking these catalogs. The catalogs include a catalog of possible occupant states, a catalog of possible collision scenarios, and a catalog of potential restraint control laws. The database is an assessment of injury outcome for each possible combination of occupant state, collision scenario, and restraint control law. In addition to the catalogs, the method requires four computational components: an occupant identifier, a collision identifier, a restraint law optimizer, and a restraint controller.
Owner:ACTIVERESTRAINT LLC

Adaptive vehicle safety system for collision compatibility

A safety system for a host vehicle includes a pre-crash sensing system generating host vehicle dynamics data, a target vehicle threat assessment, and target vehicle bumper or doorsill location data. A ride-height, Dynamic State Self-Turning (DSST) controller generates a reference ride-height signal as a function of the host vehicle dynamics data, target vehicle threat assessment, and target vehicle bumper or doorsill location data. A Rule-Based Height Regulator (RBHR) controller is feedback communication with an adjustable suspension system, is programmed to continuously adjust the host vehicle ride-height with reference to the ride-height signal, and the host vehicle bumper location to optimize the collision conditions between the two vehicles until just prior to impact.
Owner:FORD GLOBAL TECH LLC +1

Method for operating a pre-crash sensing system with protruding contact sensor

A method of operating a restraint system includes classifying a collision into a collision classification, generating a protruding contact sensor output and deploying the restraint system in response to the contact sensor output and the output classification. The method may also use a pre-crash sensor with or without classification and deploy the restraint system in response to the pre-crash sensor signal and the protruding contact sensor signal.
Owner:FORD GLOBAL TECH LLC

Method and apparatus for detecting edges of an object

The present invention provides a system and method for detecting edges of an object in a pre-crash sensing environment. The method includes extracting vertical edges from peaks in an array of column sums of absolute values of normalized horizontal derivates computed in the intensity image. The pixels with corresponding range image depths proximate the estimated object's closest surface contribute the column sums. The search is conducted for all likely combinations of left / right edge pairs preferably within a pre-determined horizontal range about the object's detected center. The left / right edge pairs that delimit a width within the pre-determined range of possible widths for the object are selected. Alternatively, an additional search is performed on each pair of edges to support any angular or inward slant on the edges of the object.
Owner:SRI INTERNATIONAL

Method and apparatus for rear-end collision warning and accident mitigation

This disclosure introduces a system which generates a visual, audio, and / or tactile warning to a driver of a lead vehicle when a possible rear-end collision is detected, based on the approach of a second vehicle from a rear direction. The system may also generate a warning signal (such as quick blinking red brake light, or an array of multi-color lights) directed to the approaching vehicle when it is determined to be approaching at an unsafe speed. The system may include one or more of: approaching-vehicle-sensors mounted on the back end of the lead vehicle, a computer processing system, a set of warning lights, a set of speakers within the lead vehicle, and an antenna and transmitter / receiver for communicating with systems of other vehicles. This system may include a connection to the existing taillight system and other existing systems in the lead vehicle. Extended systems may include connections to and control of head support system, seat-belt systems and airbags system to provide additional safety to the occupants of the lead vehicle. The system may also record and store a few seconds of sensor data of the pre-crash and crash related scene when an impact occurs, and provide blind spot warnings.
Owner:XEROX CORP

Method for operating a vehicle crash safety system in a vehicle having a pre-crash sensing system and countermeasure systems

A vehicle crash safety system (10) for an automotive vehicle has a pre-crash sensing system (17) generating a pre-crash signal, a vehicle dynamics detector (32) generating a vehicle dynamics signal, a pre-crash countermeasure system (40), and a pre-crash controller (12) controlling the pre-crash countermeasure system in response to the pre-crash signal and the vehicle dynamics signal. Vehicle crash safety system (10) also has a coordinated safety system controller (44) coupled to the pre-crash controller (12), an early crash sensing system (46) and an early crash countermeasure system (45). The coordinated safety system controller controls the early crash countermeasure in response to the early crash signal and signals from the pre-crash controller.
Owner:FORD MOTOR CO +1

Electric seat belt retractor system

An electric retractor extracts and retracts a seat belt in response to tension in the seat belt. The electric retractor may include a spool rotatably attached to a retractor frame. A seat belt is wound on the spool. The spool is rotated by a motor via a worm gear system that permits limited axial motion of the worm, but generally prevents the motor from being back-driven by tension in the seat belt to prevent forced seat belt extraction. The gear system may also cut off power to the motor in the event of excessive seat belt tension to prevent further payout of the seat belt. A senses tension in the seat belt and activates the motor to retract or extract the seat belt from the retractor. An emergency control system may override the web guide control in response to abnormal vehicle dynamics to provide reversible pre-crash pretensioning and / or crash pretensioning.
Owner:AUTOLIV ASP INC

On-vehicle radar device

An on-vehicle radar device has a transmission section for transmitting a radio wave to an object, a receive section for receiving the radio wave reflected by the object, and a processing section for dividing an object detection range into three or more of a plurality of areas, setting a threshold of an intensity of the radio wave received for each of the plurality of areas, and judging the existence of an object by comparing the intensity of the radio wave and the threshold. This processing section sets, based on an auto-cruise control mode or pre-crash mode of the vehicle, a threshold of a part of an area in the object detection range to be lower than the threshold of the other areas, or changes the threshold of the detection area according to the object detection status.
Owner:DENSO TEN LTD

Active adaptation of vehicle restraints for enhanced performance robustness

A vehicle crash safety system includes a pre-crash sensing system generating an object threat assessment and vehicle dynamics data, an occupant sensing system generating occupant characteristic data, and an Occupant Safety Reference Model (OSRM) controller for generating a reference safety restraint deployment profile as a function of the object threat assessment, vehicle dynamics data and occupant characteristic data. An active restraint adaptation (ARA) controller in operative communication with the OSRM controller and a decentralized restraint controller. The ARA controller sends restraint deployment targets, and the safety restraint deployment profile to the decentralized restraint controller. The ARA controller may modify input signals to the decentralized controller based on the real-time occupant position trajectory. The decentralized restraint controller is adapted to operate the restraint system as a function of signals from the ARA controller and real-time occupant-restraint system interactions.
Owner:FORD MOTOR CO

Method for operating a pre-crash sensing system to deploy airbags using inflation control

A method of operating a restraint system comprises deploying an airbag in response to a pre-crash sensing system prior to collision in a first stage and controlling an inflation of the airbag in a second stage in response to acceleration signals of the vehicle.
Owner:FORD GLOBAL TECH LLC

Controller for occupant restraint system

A vehicle occupant restraint system includes an airbag system and a seat belt harness with pretensioner and retractor mechanisms. Multiple sensors are mounted within the vehicle to measure and monitor various occupant and vehicle characteristics, which are entered into a central processing unit (CPU). These sensors include an occupant presence sensor for determining whether there is an occupant present within the airbag deployment area, a child seat sensor for determining whether a child seat is properly installed in the airbag deployment area, and a seat belt usage sensor for determining whether a seat belt is in an engaged position. The occupant presence, child seat, and seat belt usage sensors generate system modifier signals that can disable the airbag system or seat belt mechanisms if certain predetermined conditions are not satisfied. Other sensors include an occupant weight sensor, an occupant proximity sensor for determining occupant position relative to the airbag deployment area, a crash severity sensor, and a pre-crash sensor for providing vehicle speed and orientation characteristics prior to the collision. All of these sensors provide input signals that are received by the CPU. The CPU processes these multiple input signals with a hizzy logic control system to generate multiple output signals for controlling the airbag and seat belt mechanisms. The multiple output signals can include a multi-stage airbag inflation signal, a variable venting signal, a seat belt pretensioner signal, and a seat belt retractor signal.
Owner:SIEMENS VDO AUTOMOTIVE CORP

Method and apparatus for detecting edges of an object

The present invention provides a system and method for detecting edges of an object in a pre-crash sensing environment. The method includes extracting vertical edges from peaks in an array of column sums of absolute values of normalized horizontal derivates computed in the intensity image. The pixels with corresponding range image depths proximate the estimated object's closest surface contribute the column sums. The search is conducted for all likely combinations of left / right edge pairs preferably within a pre-determined horizontal range about the object's detected center. The left / right edge pairs that delimit a width within the pre-determined range of possible widths for the object are selected. Alternatively, an additional search is performed on each pair of edges to support any angular or inward slant on the edges of the object.
Owner:SRI INTERNATIONAL

Adaptive crash height adjustment using active suspensions

A vehicle crash safety system includes a pre-crash sensing system configured for gathering and / or receiving target vehicle ride-height data, and at least one actuator operatively coupled to the sensing system and configured for adjusting a height of a portion of a host vehicle responsive to a command from the sensing system. A timing of the command is responsive to an estimated dynamic response time of the at least one actuator.
Owner:FORD GLOBAL TECH LLC

In-vehicle emergency report apparatus

An in-vehicle emergency report apparatus is so constructed that the operating power source is switched from a vehicle battery to an auxiliary battery only when a pre-crash safety ECU determines that a vehicle will collide with something. That is, the operating power source is switched from the vehicle battery to the auxiliary battery only when there is a possibility that the vehicle will collide with something to thereby perform emergency report operation. This makes it possible to effectively switch the operating power source from the vehicle battery to the auxiliary battery and to prevent the capacity of the auxiliary battery from being uselessly consumed.
Owner:HUAWEI TECH CO LTD

Method for operating a vehicle crash safety system in a vehicle having a pre-crash sensing system and countermeasure systems

InactiveUS6915196B2Improve protectionUnintentional and inadvertent activation is minimizedDigital data processing detailsAnti-collision systemsMobile vehicleVehicle dynamics
A vehicle crash safety system (10) for an automotive vehicle has a pre-crash sensing system (17) generating a pre-crash signal, a vehicle dynamics detector (32) generating a vehicle dynamics signal, a pre-crash countermeasure system (40), and a pre-crash controller (12) controlling the pre-crash countermeasure system in response to the pre-crash signal and the vehicle dynamics signal. Vehicle crash safety system (10) also has a coordinated safety system controller (44) coupled to the pre-crash controller (12), an early crash sensing system (46) and an early crash countermeasure system (45). The coordinated safety system controller controls the early crash countermeasure in response to the early crash signal and signals from the pre-crash controller.
Owner:FORD MOTOR CO +1

Adaptive Crash Height Adjustment Using Active Suspensions

A vehicle crash safety system includes a pre-crash sensing system configured for gathering and / or receiving target vehicle ride-height data, and at least one actuator operatively coupled to the sensing system and configured for adjusting a height of a portion of a host vehicle responsive to a command from the sensing system. A timing of the command is responsive to an estimated dynamic response time of the at least one actuator.
Owner:FORD GLOBAL TECH LLC

Active adaptation of vehicle restraints for enhanced performance robustness

A vehicle crash safety system includes a pre-crash sensing system generating an object threat assessment and vehicle dynamics data, an occupant sensing system generating occupant characteristic data, and an Occupant Safety Reference Model (OSRM) controller for generating a reference safety restraint deployment profile as a function of the object threat assessment, vehicle dynamics data and occupant characteristic data. An active restraint adaptation (ARA) controller in operative communication with the OSRM controller and a decentralized restraint controller. The ARA controller sends restraint deployment targets, and the safety restraint deployment profile to the decentralized restraint controller. The ARA controller may modify input signals to the decentralized controller based on the real-time occupant position trajectory. The decentralized restraint controller is adapted to operate the restraint system as a function of signals from the ARA controller and real-time occupant-restraint system interactions.
Owner:FORD MOTOR CO

Vehicle seat arrangement with an electric adjustment mechanism

Vehicle seat arrangement includes an electric adjustment mechanism, a direct current motor for adjusting a vehicle seat component, with direct current terminals configured to receive a motor current. a control device for controlling or regulating direct current motor, which applies direct current to the direct current terminals based upon adjustment speed to be set. upon receiving a comfort adjustment signal control device actuates direct current motor for a gradual comfort adjustment of vehicle seat component, upon receiving a pre-crash signal control device actuates direct current motor for a rapid pre-crash adjustment of vehicle component from a current initial position to a safe pre-crash position. Adjustment data for safe pre-crash position and initial position are stored in a memory device prior to pre-crash adjustment, and rapid pre-crash adjustment is implemented at a load and acceleration that are the maximum permissible for direct current motor at the respective operating point.
Owner:FAURECIA AUTOSITZE

Occupant restraint system

An occupant restraint system of a vehicle has an airbag, a pre-crash sensor which calculates a probability of a collision of a vehicle with an object and outputs a pre-crash signal indicating a prediction of the collision when the probability is higher than a predetermined value, a satellite sensor which detects a degree of acceleration of the vehicle and starts outputting an acceleration signal indicating the detected degree of acceleration in response to the pre-crash signal, and an airbag ECU which processes the acceleration signal to obtain a processing result and deploys the airbag when the processing result indicates a collision of the vehicle with the object. Therefore, because the airbag ECU does not start processing the acceleration signal until the satellite sensor outputs the acceleration signal in response to the pre-crash signal, a load on the airbag ECU can be alleviated.
Owner:DENSO CORP

Method for operating a pre-crash sensing system with protruding contact sensor

A method of operating a restraint system includes classifying a collision into a collision classification, generating a protruding contact sensor output and deploying the restraint system in response to the contact sensor output and the output classification. The method may also use a pre-crash sensor with or without classification and deploy the restraint system in response to the pre-crash sensor signal and the protruding contact sensor signal.
Owner:FORD GLOBAL TECH LLC

Occupant Protection Device

A vehicle occupant protection device comprising a headrest configured to be movable forward with respect to a vehicle, and an actuator configured to implement the forward movement is disclosed. The device is configured to protect a vehicle occupant by operating the actuator to move the headrest forward in a pre-crash stage in the course of an object crashing into the vehicle from backside of the vehicle. The headrest is provided with an electrical capacitance sensor. The device is configured to control an amount of the forward movement of the headrest according to a variation manner of electrical capacitance, which electrical capacitance is detected by the electrical capacitance sensor when the headrest moves forward.
Owner:TOYOTA JIDOSHA KK

Object Detector

ActiveUS20160240085A1Suppress noiseSuppressing any decrease in accuracy of object detectionImage enhancementTelevision system detailsIlluminanceCruise control
Provided is an object detector capable of suppressing any decrease in accuracy of object detection under a low illuminance environment such as nighttime or in tunnels, whereby suppressing a failure of Adaptive Cruise Control, pre-crash safety systems, and the like. The object detector includes: a distance information calculation unit 105 configured to calculate distance information to an object around a vehicle from an image captured by a plurality of imaging units 102, 103; an extraction unit 106 configured to extract at least an object existing in a long distance region away from the vehicle and having a specific color from among objects in the image based on the distance information; and an output unit 108 configured to output the distance information to the object having been extracted by the extraction unit 106.
Owner:HITACHI ASTEMO LTD

Pre-crash high-voltage power-off protection system for electric vehicle

ActiveCN102837616AProtect high voltage safetyImprove high-voltage safety performanceElectric devicesActive safetyElectric vehicle
The invention relates to the field of active safety control on electric vehicles, in particular to a pre-crash high-voltage power-off protection system for an electric vehicle. The pre-crash high-voltage power-off protection system comprises a target identification module (1), a vehicle control module (2), a power system module (3), a high-voltage power supply module (4), a high-voltage relay (5) and a high-voltage power supply output module (6), wherein the target identification module (1) is connected to a data input interface of the vehicle control module (2); a control power system interface and a control relay interface of the vehicle control module (2) are respectively connected with control terminals of the power system module (3) and the high-voltage relay (5); and controlled terminals of the high-voltage power supply module (4) and the high-voltage relay (5) are connected with a high-voltage power supply output module (6) in series to form a high-voltage power supply. The pre-crash high-voltage power-off protection system disclosed by the invention can ensure the high-voltage safety of the staffs inside the vehicle when the vehicle crashes, so that the high-voltage safety performance of the electric vehicle is improved.
Owner:CHINA AUTOMOTIVE ENG RES INST

Vehicle pre-crash system

The invention discloses a vehicle pre-crash system which is provided with a vehicle speed judgment module, a preposition radar unit and a crash calculation unit, wherein the vehicle speed judgment module is in communication connection with a vehicle bus to acquire current vehicle speed per hour; the preposition radar unit acquires a distance from and a position of a front vehicle in real time; the crash calculation unit calculates a minimum braking distance via the current vehicle speed per hour; the obtained minimum braking distance is compared with the distance from the front vehicle to judge whether unavoidable crash occurs; and the unavoidable crash is defined as follows that the minimum braking distance is greater than the distance from the front vehicle. With the adoption of the technical scheme, according to the vehicle pre-crash system, the corresponding crash judgment unit is arranged to effectively reduce crash probability of a vehicle; and even if the unavoidable crash occurs, auxiliary brake measures and corresponding safety measures can be adopted to effectively protect passengers in the vehicle. The adopted technology is mature, and the system is very suitable for extensive popularization among the vehicles.
Owner:DALIAN ORIENT METAL

Vehicle control apparatus

Rear lateral detection (RLL) ECU 10 determines whether or not a lane change assist control (LCA) is being performed. The RLDECU 10 sets a performing condition for performing a rear-end pre-crash safety control (rear PCS control) to a moderate performing condition when the LCA is being performed, and sets the performing condition of the rear PCS control to a normal performing condition when the LCA, is not being performed. The moderate performing condition is set such that the rear PCS control is performed more easily compared with the normal performing condition. For example, in the moderate performing condition, a detection area of a target vehicle which is a vehicle subject to the rear PCS control is expanded compared with the detection area in the normal performing condition.
Owner:TOYOTA JIDOSHA KK
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products