Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

145 results about "Implantable Neurostimulators" patented technology

Surgically placed electric conductors through which ELECTRIC STIMULATION of nerve tissue is delivered.

Human-implantable-neurostimulator user interface having multiple levels of abstraction

A programming-device user interface may include multiple levels of abstraction for programming treatment settings. A stimulation zone-programming interface may be at a highest level of abstraction and may include idealized stimulation zones. A field strength-programming interface may be at a middle level of abstraction and may include electromagnetic field-strength patterns generated by the stimulation zones, and / or electrode settings, and a depiction of how the electromagnetic fields interact with each other. An electrode-programming interface may be at a lowest level of abstraction and may depict treatment settings at an electrodes-view level. These interfaces may include a display of a stimulatable area of the patient's body. The display may include a depiction of leads and / or the underlying physiology, such as a depiction of a portion of a spine. Algorithms map treatment settings from one level of abstraction to settings at one or more other levels of abstraction.
Owner:MEDTRONIC INC

Implantable medical device having multiple electrode/sensor capability and stimulation based on sensed intrinsic activity

In one embodiment, an implantable neurostimulator comprises a pulse generator that generates an electrical pulse signal to stimulate a neural structure in a patient, a stimulation lead assembly coupled to the pulse generator for delivering the electrical pulse signal to the neural structure, a plurality of sensors coupled to the pulse generator, and sensor select logic. Each sensor is individually selectable and the sensor select logic selects any two or more of the plurality of sensors for sensing a voltage difference between the selected sensors. In other embodiments, two or more physiologic parameters are sensed. In yet another embodiment, a method comprises sensing intrinsic electrical activity on a person's nerve and stimulating the nerve based on the sensed intrinsic electrical activity of the nerve.
Owner:LIVANOVA USA INC

Selection of neurostimulator parameter configurations using genetic algorithms

In general, the invention is directed to a technique for selection of parameter configurations for a neurostimulator using genetic algorithms. The technique may be employed by a programming device to allow a clinician to select parameter configurations, and then program an implantable neurostimulator to deliver therapy using the selected parameter configurations. In operation, the programming device executes an electrode configuration search algorithm to guide the clinician in the selection of electrode configurations. The search algorithm relies on a genetic algorithms to identify potential optimum electrode configurations within an electrode set. The genetic algorithms provide guidance in the electrode configuration selections process, interactively guiding the clinician by suggesting the configurations that are most likely to be efficacious given the results of tests already performed during an evaluation session.
Owner:MEDTRONIC INC

Fully implantable neurostimulator for autonomic nerve fiber stimulation as a therapy for urinary and bowel dysfunction

InactiveUS7054689B1Reduce excitementIncrease excitementElectrotherapyAutonomic nerve fibersMedicine
An implantable stimulator(s), small enough to be located near or adjacent to an autonomic nerve(s) innervating urinary and / or gastrointestinal structures, uses a power source / storage device, such as a rechargeable battery. Periodic recharging of such a power source / storage device is accomplished, for example, by inductive coupling with an external appliance. The small stimulator provides a means of stimulating a nerve(s) or other tissue when desired, without the need for external appliances during the stimulation session. When necessary, external appliances are used for the transmission of data to and / or from the stimulator(s) and for the transmission of power, if necessary. In a preferred embodiment, the system is capable of open- and closed-loop operation. In closed-loop operation, at least one implant includes at least one sensor, and the sensed condition is used to adjust stimulation parameters.
Owner:BOSTON SCI NEUROMODULATION CORP

Modulation and analysis of cerebral perfusion in epilepsy and other neurological disorders

A system including an implantable neurostimulator device capable of modulating cerebral blood flow to treat epilepsy and other neurological disorders. In one embodiment, the system is capable of modulating cerebral blood flow (also referred to as cerebral perfusion) in response to measurements and other observed conditions. Perfusion may be increased or decreased by systems and methods according to the invention as clinically required.
Owner:NEUROPACE

Implantable system enabling responsive therapy for pain

An implantable neurostimulator system for treating pain includes scheduled and responsive therapy capabilities including responsive stimulation applied to the brain and peripheral sections of the nervous system. Methods for treating chronic nociceptive, neuropathic, and psychogenic pain employ an inventive system to advantageously reduce multiple symptoms and components of pain and to address underlying causes of pain.
Owner:NEUROPACE

Responsive electrical stimulation for movement disorders

An implantable neurostimulator system for treating movement disorders includes a sensor, a detection subsystem capable of identifying episodes of a movement disorder by analyzing a signal received from the sensor, and a therapy subsystem capable of applying therapeutic electrical stimulation to treat the movement disorder. The system treats movement disorders by detecting physiological conditions characteristic of an episode of symptoms of the movement disorder and selectively initiating therapy when such conditions are detected.
Owner:NEUROPACE

Implantable therapy delivery element adjustable anchor

An implantable therapy delivery system has a therapy delivery element that is inserted or implanted into a human body and anchored or fixed to tissue to delivery a therapy to a patient. In one embodiment an implantable neurostimulator uses an electrical stimulation lead to delivery a therapy such as sacral nerve stimulation, peripheral nerve stimulation, and the like. In another embodiment the implantable therapeutic substance delivery device, also known as a drug pump, is connected to a catheter to deliver a therapy to treat conditions such as spasticity, cancer, pain, and the like. The therapy delivery element is anchored to tissue using an adjustable anchor having a therapy grip element, at least two extension elements connected to the therapy grip element, and a tissue fixation element connected to the extension elements. The extensions project substantially perpendicular in relation to the therapy delivery element and are configured to actuate the therapy grip element to an opened position and a closed position. A tissue fixation element is connected to the extensions and configured for fixation to a tissue location from an axial direction to the therapy delivery element. The adjustable anchor facilitates minimally invasive procedures, facilitates securing the therapy delivery element in the same plane as the therapy delivery element was inserted, facilitates rapid placement to reduce procedure time, and provides a wide range of other benefits. The adjustable anchor and its methods of operation have many embodiments.
Owner:MEDTRONIC INC

Implantable system enabling responsive therapy for pain

An implantable neurostimulator system for treating pain includes scheduled and responsive therapy capabilities including responsive stimulation applied to the brain and peripheral sections of the nervous system. Methods for treating chronic nociceptive, neuropathic, and psychogenic pain employ an inventive system to advantageously reduce multiple symptoms and components of pain and to address underlying causes of pain.
Owner:NEUROPACE

Patient-specific template development for neurological event detection

An epileptiform activity patient-specific template creation system permits a user to efficiently develop an optimized set of patient-specific parameters for epileptiform activity detection algorithms. The epileptiform activity patient template creation system is primarily directed for use with an implantable neurostimulator system having EEG storage capability, in conjunction with a computer software program operating within a computer workstation having a processor, disk storage and input / output facilities for storing, processing and displaying patient EEG signals. The implantable neurostimulator is operative to store records of EEG data when neurological events are detected, when it receives external commands to record, or at preset or random times. The computer workstation operates on stored and uploaded records of EEG data to derive the patient-specific templates.
Owner:NEUROPACE

Minimally invasive method for implanting a sacral stimulation lead

Method embodiments to implant a stimulation lead in a patient's sacrum to deliver neurostimulation therapy can reduce patient surgical complications, reduce patient recovery time, and reduce healthcare costs. A method embodiment begins by inserting a needle posterior to the sacrum through an entry point. The needle is guided into a foramen along an insertion path to a desired location. The insertion path is dilated with a dilator to a diameter sufficient for inserting a stimulation lead. The needle is removed from the insertion path. The stimulation lead is inserted to the desired location. The dilator is removed from the insertion path. Additionally if the clinician desires to separately anchor the stimulation lead, an incision is created through the entry point from an epidermis to a fascia layer. The stimulation lead is anchored to the fascia layer. After the stimulation lead has been anchored, the incision can be closed, or the stimulation lead proximal end can be tunneled to where an implantable neurostimulator is located and then the incision can be closed. A implanted sacral stimulation lead can be connected to the neurostimulator to delivery therapies to treat pelvic floor disorders such as urinary control disorders, fecal control disorders, sexual dysfunction, and pelvic pain.
Owner:MEDTRONIC INC +1

Patient directed therapy management

An method and system that allows a patient to access stored preset patient therapy programs, that are resident in a medical device such an implantable pump or a combination medical device having an implantable pump and a implantable neural stimulator, and to create personalized therapy programs or automatic timing therapy programs from preset therapy programs to accommodate the patient's particular activity. Alternatively, the patient can select and access stored preset patient therapy programs and combine at least two modified or unmodified preset therapy programs to create personalized therapy programs.
Owner:MEDTRONIC INC

Differential neurostimulation therapy driven by physiological therapy

An implantable neurostimulator system adapted to provide therapy for various neurological disorders is capable of varying therapy delivery strategies based on the context, physiological or otherwise, into which the therapy is to be delivered. Responsive and scheduled therapies can be varied depending on various sensor measurements, calculations, inferences, and device states (including elapsed times and times of day) to deliver an appropriate course of therapy under the circumstances.
Owner:NEUROPACE

Implantable Neurostimulator with Integral Hermetic Electronic Enclosure, Circuit Substrate, Monolithic Feed-Through, Lead Assembly and Anchoring Mechanism

An implantable medical device is provided for the suppression or prevention of pain, movement disorders, epilepsy, cerebrovascular diseases, autoimmune diseases, sleep disorders, autonomic disorders, abnormal metabolic states, disorders of the muscular system, and neuropsychiatric disorders in a patient. The implantable medical device can be a neurostimulator configured to be implanted on or near a cranial nerve to treat headache or other neurological disorders. One aspect of the implantable medical device is that it includes an electronics enclosure, a substrate integral to the electronics enclosure, and a monolithic feed-through integral to the electronics enclosure and the substrate. In some embodiments, the implantable medical device can include a fixation apparatus for attaching the device to a patient.
Owner:UNITY HA LLC

Spatial decimation stimulation in an implantable neural stimulator, such as a cochlear implant

A cochlear implant system, or other neural stimulation system, has the capability to stimulate fast enough to induce stochastic neural firing so as to restore “spontaneous” neural activity. The stimulation rate applied to the more distally-located electrodes of an electrode array connected to the implant system is reduced from the stimulation rate applied to the more proximally-located electrodes. Thus, in the case of a cochlear implant system, the apically-located regions within the cochlea are stimulated at a reduced rate in order to conserve power. Pulse widths of the reduced-rate pulses may further be increased, and amplitudes reduced, to further conserve power. As needed, a low-level random conditioner stimulation signal may be applied to the apical regions of the cochlea in order to ensure the occurrence of random neural firings.
Owner:ADVANCED BIONICS AG

Responsive therapy for psychiatric disorders

An implantable neurostimulator system for treating psychiatric disorders includes scheduled and responsive therapy capabilities including responsive stimulation applied to the cingulate gyrus of the brain. Methods for treating depression, bipolar disorder, anxiety and obsessive-compulsive disorders, post-traumatic stress disorder, addiction, schizophrenia, and autism and other developmental disorders employ an inventive system to advantageously reduce symptoms and address underlying causes of the disorders.
Owner:NEUROPACE

Auto adjusting system for brain tissue stimulator

An implantable neurostimulator for treating disorders such as epilepsy, pain, movement disorders and depression includes a detection subsystem capable of detecting a physiological condition and a therapy subsystem capable of providing a course of therapy in response to the condition. The therapy subsystem includes an auto-adjust module for automatically adjusting one or more parameters of the therapy so that the therapy subsystem can provide an adjusted parameter to the patient and solicit the patient's feedback concerning the adjustment without requiring the presence of, or immediate involvement with, a clinician or physician. The patient feedback can be analyzed by computer, clinician or a combination of both to determine an optimal range of parameters for subsequent courses of therapy. In this manner, information useful in tuning the neurostimulator therapy parameters to optimize them for individual patient can be acquired automatically outside of the traditional clinical setting, saving time and minimizing patient fatigue that otherwise would be experience in marathon, in-clinic tuning sessions. The auto-adjust module also can be configured to prompt the patient to provide feedback even when parameters are not being adjusted, so as to acquire information for a baseline or about any placebo effect when the patient is otherwise expecting changes to the therapy to be made.
Owner:NEUROPACE

Implantable neurostimulator

A programmable neurostimulator is described herein. The neurostimulator comprises an internal part located in a patient's body and including an implant, at least one electrode, and a communication link; and an external part, connected to the implant by the communication link, the external part including a user interface. Wherein the user interface enables programming stimulation algorithms in the implant through the communication link so that, when activated, the implant generates electrical stimulation pulses by means of the at least one electrode located at sites of stimulation of the body.
Owner:UNIV DE SHERBROOKE

Remote control unit for use with an implantable neural stimulator system

An implantable neural stimulation system, such as an auditory Fully Implantable System (FIS), includes: (1) an implanted device capable of providing desired tissue or nerve stimulation; and (2) a remote control unit that provides a mechanism for readily controlling the implant device. The remote control unit uses a first signal path to send signals to the implant device, and a second signal path to receive signals from the implant device. The combination of these two signal paths provides a full-duplex channel between the remote control unit and the implant device through which appropriate control and status signals may be sent and received. In one embodiment, the first signal path comprises an audio signal path through which audio control signals, e.g., a tone sequence or a 32-bit word FSK modulated between 300 and 1200 Hz, are sent; and the second signal path comprises a RF signal path through which a BPSK, QPSK or FM modulated RF signal is received. The full-duplex channel allows operation of the remote control unit, i.e., allows signals to be successfully sent to and received from the implant device, from as far away as 45–60 cm from the implant device.
Owner:ADVNACED BIONICS LLC

Apparatus, System, and Method for Selective Stimulation

An implantable neurostimulator system is disclosed, the neurostimulator system comprising a hollow cylindrical electronics enclosure having a top, a bottom, and a side; a coil extending from a first part of the electronics enclosure; and at least one electrode operatively connected to the electronics enclosure.
Owner:IMTHERA MEDICAL

Optical communication of neurostimulation-system information

A neurostimulation lead includes fiber optic cable. A human-implantable neurostimulator and neurostimulation lead each include an opto-electric transducer. The opto-electric transducers can be an optical transmitter, an optical receiver, or an optical transducer, that converts: electrical energy to optical energy; optical energy to electrical energy; or both electrical energy to optical energy and optical energy to electrical energy. Neurostimulation-lead electrodes can be activated, and / or lead-status information can be transmitted, over the fiber optic cable, between the neurostimulator and the neurostimulation lead. A neurostimulation-lead power converter may be coupled to a pulse generator of the neurostimulator such that the power converter derives and stores power for the lead from stimulation pulses received from the stimulation-pulse generator.
Owner:MEDTRONIC INC

Modulation and analysis of cerebral perfusion in epilepsy and other neurological disorders

A system including an implantable neurostimulator device capable of modulating cerebral blood flow to treat epilepsy and other neurological disorders. In one embodiment, the system is capable of modulating cerebral blood flow (also referred to as cerebral perfusion) in response to measurements and other observed conditions. Perfusion may be increased or decreased by systems and methods according to the invention as clinically required.
Owner:NEUROPACE

Differential neurostimulation therapy driven by physiological therapy

An implantable neurostimulator system adapted to provide therapy for various neurological disorders is capable of varying therapy delivery strategies based on the context, physiological or otherwise, into which the therapy is to be delivered. Responsive and scheduled therapies can be varied depending on various sensor measurements, calculations, inferences, and device states (including elapsed times and times of day) to deliver an appropriate course of therapy under the circumstances.
Owner:NEUROPACE
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products