Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

104 results about "Feedforward amplifiers" patented technology

Apparatus and method for controlling adaptive circuits

A feed-forward amplifier having a signal cancellation loop including a cancellation node that includes a gain controller and a phase controller. Each controller provides a discrete tap steering signal and modulates the corresponding tap steering signal with a discrete tracer signal that takes on a preselected sequence of values. The sequence chosen so that the tracer signal is mutually orthogonal to each other tracer signal over a preselected period. A gain and phase adjuster connected to the outputs of the controllers provides a controlled gain change and phase shift in the signal cancellation loop, the magnitude of the gain change and phase shift controlled by the corresponding tap steering signals presented to the gain and phase adjuster by the controllers. A detector, the input of which is connected to the cancellation node and the output of which is connected to the controllers, outputs a measure of the envelope of the signal at the cancellation node. After the preselected period new values for the tap steering signals presented to the gain and phase adjuster by the controllers are obtained by multiplying detector output by the respective tracer signal, each over the respective preselected period, summing each resulting series of values, and changing the tap steering signals to be modulated and presented to the gain and phase adjuster in accordance with the values of the respective sums.
Owner:TAIWAN SEMICON MFG CO LTD

Multi-band feed-forward amplifier and adjustment method therefor

A multi-band feed-forward amplifier is formed by: a dividing part for dividing and applying an input signal containing signals of multiple frequency bands to a linear signal path and N vector adjustment paths of a distortion detecting circuit; frequency band signal extractors provided in the N vector adjustment paths, respectively, for extracting signals of N frequency bands; N vector adjusters for adjusting the vectors of the output signals from the respective frequency band signal extractors; a main amplifier for amplifying the output signals from the N vector adjusters; a combining/dividing part for combining the amplified signals and the signal from the linear signal path of the distortion detecting circuit and for dividing and applying the combined output to a linear signal path and N distortion injection paths of a distortion cancelling circuit; frequency band signal extractors provided in the N distortion injection paths, respectively, for extracting the signals of the N frequency bands; vector adjusters for adjusting the vectors of signals separated into the N frequency bands; an auxiliary amplifying part for amplifying the vector-adjusted N signals; and a combining part for combining the amplified signals and the signal from the linear signal path of the distortion cancelling circuit.
Owner:NTT DOCOMO INC

Feed-forward amplifier

There is provided a feed-forward amplifier which enables a predistortion circuit to obtain sufficient distortion compensation effects even if ambient temperature or the like changes. The feed-forward amplifier includes a variable attenuator for controlling the amount of attenuation of a signal input to a main amplifier, a variable attenuator for controlling the amount of attenuation to prevent deterioration of distortion compensation due to a change in the ambient temperature of the main amplifier, a variable attenuator for controlling the amount of attenuation of a signal input to an auxiliary amplifier, and a variable attenuator for controlling the amount of attenuation to prevent deterioration of distortion compensation due to a change in the ambient temperature of the auxiliary amplifier, wherein a control circuit controls the variable attenuators to reduce the amount of attenuation according to the reduced gain of the main amplifier and the reduced gain of the auxiliary amplifier, and a control circuit controls the variable attenuators to optimize the amount of attenuation according to the ambient temperature of the main amplifier and the ambient temperature of the auxiliary amplifier.
Owner:KOKUSA ELECTRIC CO LTD

Feed-forward amplifier

There is provided a feed-forward amplifier which enables a predistortion circuit to obtain sufficient distortion compensation effects even if ambient temperature or the like changes. The feed-forward amplifier includes a variable attenuator for controlling the amount of attenuation of a signal input to a main amplifier, a variable attenuator for controlling the amount of attenuation to prevent deterioration of distortion compensation due to a change in the ambient temperature of the main amplifier, a variable attenuator for controlling the amount of attenuation of a signal input to an auxiliary amplifier, and a variable attenuator for controlling the amount of attenuation to prevent deterioration of distortion compensation due to a change in the ambient temperature of the auxiliary amplifier, wherein a control circuit controls the variable attenuators to reduce the amount of attenuation according to the reduced gain of the main amplifier and the reduced gain of the auxiliary amplifier, and a control circuit controls the variable attenuators to optimize the amount of attenuation according to the ambient temperature of the main amplifier and the ambient temperature of the auxiliary amplifier.
Owner:KOKUSA ELECTRIC CO LTD

Multi-band feed-forward amplifier and adjustment method therefor

A multi-band feed-forward amplifier is formed by: a dividing part for dividing and applying an input signal containing signals of multiple frequency bands to a linear signal path and N vector adjustment paths of a distortion detecting circuit; frequency band signal extractors provided in the N vector adjustment paths, respectively, for extracting signals of N frequency bands; N vector adjusters for adjusting the vectors of the output signals from the respective frequency band signal extractors; a main amplifier for amplifying the output signals from the N vector adjusters; a combining / dividing part for combining the amplified signals and the signal from the linear signal path of the distortion detecting circuit and for dividing and applying the combined output to a linear signal path and N distortion injection paths of a distortion cancelling circuit; frequency band signal extractors provided in the N distortion injection paths, respectively, for extracting the signals of the N frequency bands; vector adjusters for adjusting the vectors of signals separated into the N frequency bands; an auxiliary amplifying part for amplifying the vector-adjusted N signals; and a combining part for combining the amplified signals and the signal from the linear signal path of the distortion cancelling circuit.
Owner:NTT DOCOMO INC

Feed forward amplifier system using penalties and floors for optimal control

A feed forward amplifier employing a new adaptive controller and method is disclosed. The controller aligns both a gain adjuster and phase adjuster of a first cancellation loop. The phase adjuster may be controlled following a standard approach. However, the gain adjuster is offset intentionally causing an incomplete cancellation, increasing the signal power passing through the error amplifier. If the gain adjuster is offset low, below the gain adjustment required to maximize carrier cancellation, peak power output from the main amplifier is reduced while the second loop maintains constant system output power. If the gain adjuster is offset high, peak power output from the error amplifier is reduced while the second loop maintains constant system output power. By controlling the gain adjuster offset from full first loop cancellation, the feed forward amplifier can be optimized for the power handling capabilities of the main and error amplifiers. A system and method of specifying and controlling the steady-state offset of the first loop gain adjuster is also disclosed. By altering the cost function of the first loop gain, the desired gain adjuster offset becomes the steady-state adjustment. Floors and penalties are incorporated into the first loop gain minimization approach to allow precise specification of the gain adjuster offset. The gain adjuster offset can be controlled at will to optimize the feed forward system even when the operating conditions or goals are varying.
Owner:INTEL CORP
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products