Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

149 results about "Network allocation vector" patented technology

The network allocation vector (NAV) is a virtual carrier-sensing mechanism used with wireless network protocols such as IEEE 802.11 (Wi-Fi) and IEEE 802.16 (WiMax). The virtual carrier-sensing is a logical abstraction which limits the need for physical carrier-sensing at the air interface in order to save power. The MAC layer frame headers contain a duration field that specifies the transmission time required for the frame, in which time the medium will be busy. The stations listening on the wireless medium read the Duration field and set their NAV, which is an indicator for a station on how long it must defer from accessing the medium.

Access method for periodic contention-free sessions

An access method for periodic contention-free sessions (PCFS) reduces interference between overlapping first and second wireless LAN cells contending for the same medium. Each cell includes a respective plurality of member stations and an access point (AP) station. The access method for periodic contention-free sessions (PCFS) includes a fixed cycle time that reduces conflicts with PCFS from other cells. The PCFS from several cells are repeated in cycles of cycle period (CP), which is the contention-free period (CFP) of an access point times a factor that is a function of the number of overlapping cells. Periodic contention-free sessions (PCFSs) are generated, one from each overlapping cell. PCFS transmission attempts occur at the fixed specified time spacing following the start of the previous cycle. Each active AP sets a timer at CP and a PCFS is initiated when the timer expires. The timer is then reset to CP and this starts a new cycle. Contention transmissions are attempted by stations based on their assigned priority. If a channel is busy at the designated start time for transmitting a PCFS, the PCFS is shortened by the time lost. Interleaving PCFSs and CFSs reduces conflicts with CFSs from other cells. To lessen the contention between APs of different cells, each station's Network Allocation Vector (NAV) and Inter-BSS Network Allocation Vector (IBNAV) is updated by an increased value of the next CFS length, the increment being the inter-BSS contention period (IBCP). APs will attempt to access the channel during the IBCP only for transmitting a PCFS, while they will wait for the NAV and IBNAV expirations before attempting to transmit a CFS. Interleaving PCFSs and CFSs also enables maintaining quality of service (QoS).
Owner:AT&T INTPROP II L P

Method for establishing layer-striding dynamic source route protocol based on load balance

InactiveCN101415248AReduce the scope of query floodingReduce the number of discoveriesNetwork traffic/resource managementNetwork topologiesIdle timeNetwork allocation vector
The invention relates to the technical field of wireless communication and discloses a building method for a layer-spanning dynamic source routing protocol based on load balance. With a single-path routing mode adopted and based on the dynamic source routing protocol, the method comprises the following steps: based on IEEE802.11 MAC layer technology, a cycle T is determined, network distribution vectors in a request frame and an allowing frame sent by a neighbor node S are intercepted within the cycle T, and the idle time of the node is calculated to obtain the residual available bandwidth of the node; the residual available bandwidth, the load, the hop count and the data quantity in a buffer queue of the node S are transferred to the network layer to form routing metrics, and a path parameter with the biggest metric is selected; a plurality of gateways used for shifting flows are built for shunting the flows to separate gateway. The building method for the layer-spanning dynamic source routing protocol based on the load balance can maintain the load balance of the whole network, reduce the routing query flooding range, reduce the times of routing discovery and improve the throughput of WMN.
Owner:SUN YAT SEN UNIV

Access method for periodic contention-free sessions

An access method for periodic contention-free sessions (PCFS) reduces interference between overlapping first and second wireless LAN cells contending for the same medium. Each cell includes a respective plurality of member stations and an access point (AP) station. The access method for periodic contention-free sessions (PCFS) includes a fixed cycle time that reduces conflicts with PCFS from other cells. The PCFS from several cells are repeated in cycles of cycle period (CP), which is the contention-free period (CFP) of an access point times a factor that is a function of the number of overlapping cells. Periodic contention-free sessions (PCFSs) are generated, one from each overlapping cell. PCFS transmission attempts occur at the fixed specified time spacing following the start of the previous cycle. Each active AP sets a timer at CP and a PCFS is initiated when the timer expires. The timer is then reset to CP and this starts a new cycle. Contention transmissions are attempted by stations based on their assigned priority. If a channel is busy at the designated start time for transmitting a PCFS, the PCFS is shortened by the time lost. Interleaving PCFSs and CFSs reduces conflicts with CFSs from other cells. To lessen the contention between APs of different cells, each station's Network Allocation Vector (NAV) and Inter-BSS Network Allocation Vector (IBNAV) is updated by an increased value of the next CFS length, the increment being the inter-BSS contention period (IBCP). APs will attempt to access the channel during the IBCP only for transmitting a PCFS, while they will wait for the NAV and IBNAV expirations before attempting to transmit a CFS. Interleaving PCFSs and CFSs also enables maintaining quality of service (QoS).
Owner:AT&T INTPROP II L P
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products