Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

258 results about "Vascular prosthesis" patented technology

Vessel Prosthesis

ActiveUS20170079812A1Reduce or eliminate any relatively sharp or rough edgesStentsProsthesisVascular prosthesisBlood vessel prosthesis
A vascular prosthesis is described, having blunted wire ends. The blunted wire ends can take on a variety of configurations including end caps, bent ends, curved ends, or eyelets. The novel ends provide a smooth surface to contact the blood vessel walls thereby reducing the risk of trauma during placement of the prosthesis.
Owner:TERUMO KK

Coated vascular grafts and methods of use

A vascular graft, such as an AAA stent graft, includes a core zone of PET fabric with a non-porous coating comprising a polyurethane, such as Thoralon®, disposed on at least one surface. The coating provides a barrier to prevent short and long term leakage of fluids through the pores of the PET fabric core zone. A method for sealing the pores of a porous PET graft includes the step of coating at least one surface of said graft with at least one polyurethane, or mixtures and combinations thereof. Preferably, the coating is Thoralon®. A method for making a vascular prosthesis includes the steps of providing a core zone of PET fabric, and coating at least one surface of the core zone with at least one polyurethane, or mixtures and combinations thereof, such as Thoralon®. Finally, a method of repairing or treating a defective vessel includes the step of reinforcing or replacing the defective vessel with a graft according to the invention.
Owner:TC1 LLC

Elastomerically impregnated ePTFE to enhance stretch and recovery properties for vascular grafts and coverings

This invention relates to an elastomerically recoverable PTFE material that includes a longitudinally compressed fibrils of ePTFE material penetrated by elastomeric material within the pores defining the elastomeric matrix. The elastomeric matrix and the compressed fibrils cooperatively expand and recover without plastic deformation of the ePTFE material. This invention was used for various prosthesis, such as a vascular prosthesis like a patch, a graft and an implantable tubular stents. Furthermore, this invention discloses a method of producing the elastomerically recoverable PTFE material which include the steps of: providing the specified ePTFE, defined by the nodes and fibrils, to meet the desired end use; longitudinally compressing the fibrils of the ePTFE, the pore size sufficiently enough to permit penetration of the elastomeric material; applying the elastomeric material within the pores to provide a structurally integral elastomerically recoverable PTFE material defining an elastomeric matrix. The elastomeric material is applied to the ePTFE by dip, brush or spray coating techniques. The compression step and the application steps are interchangeable to produce the desired properties for the end use material. Finally, the elastomeric material is dried within the pores of the longitudinally compressed ePTFE to solidify the elastomeric matrix.
Owner:LIFESHIELD SCI

Multi-segmented graft deployment system

A deployment catheter for deploying endoluminal vascular prosthesis that has at least a main graft portion and a first branch graft portion includes an elongate, flexible catheter body having a proximal end and a distal end and comprising an outer sheath and an inner core that is axially moveable with respect to the outer sheath. The catheter includes a main graft restraint that has a main graft release mechanism comprising a plurality of axially spaced restraint members. The catheter further includes a branch graft restraint comprising a branch graft release mechanism.
Owner:ENDOLOGIX LLC

Instrument for implanting vascular prostheses

An instrument for implanting an expandable cylindrical vascular prosthesis includes an outer tube and an inner tube which can be displaced relative to one another. The inner tube is longitudinally slotted on the distal end, at least in an area thereof, and ensheathes the stent with this area which includes the longitudinal slot. In order to implant the stent, the outer tube is retracted. The stent then expands with continuous retracting movement of the outer tube and the inner tube is pressed open along the longitudinal slot. Implantation is terminated, when the outer tube is retracted along the entire length of the stent. The implantation is reversible by pushing the outer tube forward, as long as the stent has not yet fully exited the instrument. In this way, the inner tube is constricted together with the stent, and compressed to an initial position.
Owner:MERIT MEDICAL SYST INC

Vascular prosthesis and method for production thereof

A vascular prosthesis comprising a first layer having a predetermined first porosity and a second layer having a predetermined second porosity, wherein the first layer and the second layer are each made of first and second electrospun polymer fibers.
Owner:NICAST LTD

Vascular prosthesis and method for production thereof

A vascular prosthesis comprising a first layer having a predetermined first porosity and a second layer having a predetermined second porosity, wherein the first layer and the second layer are each made of first and second electrospun polymer fibers.
Owner:NICAST LTD

Delivery catheter that controls foreshortening of ribbon-type prostheses and methods of making and use

InactiveUS20050246010A1Improve accuracyReduced foreshorteningStentsBlood vesselsVascular prosthesisBlood vessel
The present invention is directed to a delivery catheter for use in deploying a vascular prosthesis having a self-expanding helical section for use in a wide range of interventional applications. The delivery catheter comprises an elongated member having a helical ledge with a pitch selected to impose a predetermined amount of foreshortening on the vascular prosthesis during deployment. Methods of making and using the delivery catheter of the present invention also are provided.
Owner:NOVOSTENT CORP

Vascular prosthesis having improved flexibility and nested cell delivery configuration

An implantable vascular prosthesis having improved flexibility is provided comprising a helical body portion having a reduced delivery configuration and an expanded deployed configuration, the helical body portion comprising a plurality of cells interconnected by hinge points that enhances flexibility of the vascular prosthesis and provides at least partial nesting of adjacent turns of the helical body portion in the reduced delivery configuration.
Owner:NOVOSTENT CORP

Elastomeric radiopaque adhesive composite and prosthesis

InactiveUS20060058867A1Enhanced tissue ingrowthHigh suture retention strengthStentsSurgical adhesivesElastomerAdhesive
An elastomeric radiopaque adhesive composition which includes a biocompatible elastomeric matrix and a radiopaque material distributed therein in sufficient amounts to produce a radiopaque image. Further, a hybrid vascular prosthesis including a PTFE structure, a textile structure and a cured elastomeric bonding agent adhesively secures the PTFE to the textile. The elastomeric agent having radiopaque material impregnated therein in sufficient amounts to produce a radiopaque image.
Owner:LIFESHIELD SCI

Stent delivery system with improved delivery force distribution

A stent delivery system that helps equalize delivery forces throughout a vascular prosthesis during delivery thereof to an intended treatment site. The delivery system comprises a catheter having a lumen therethrough, an inner core over which the one or more stents or stent grafts is mounted for delivery from the catheter, and an outer sheath overlying the one or more stent or stent graft and the inner core. The inner core of the further comprises a series of outwardly flared members that engage segments or fill voids in or between the stent, stents or stent grafts, respectively. The outwardly flared members of the inner core thus help maintain the segments of the stent or the one or more stents or stent grafts in spaced relation with respect to one another as delivery thereof occurs and as removal of the outer sheath occurs to position the one or more stents or stent grafts at the intended treatment site. The outwardly flared members thus help to distribute delivery forces more evenly throughout the one or more stents or stent grafts being delivered from the catheter. The outwardly flared members further aid accurate placement of the one or more stents or stent grafts by maintaining longitudinal spacing thereof during delivery.
Owner:CORDIS CORP

Delivery system for vascular prostheses and methods of use

The present invention is directed to a delivery system for delivering a vascular prosthesis within a vessel, the vascular prosthesis having a contracted delivery configuration and a deployed configuration. The delivery system comprises a loader tube having a lumen preloaded with a delivery wire carrying a vascular prosthesis in the contracted delivery configuration. A separately inserted sheath includes a lumen configured to accept the vascular prosthesis, while retaining it in the contracted delivery configuration. The delivery wire is used to translate the vascular prosthesis to a distal end of the sheath for deployment in a vessel.
Owner:NOVOSTENT CORP

Dual concentric guidewire and methods of bifurcated graft deployment

A guidewire assembly for use in deploying a bifurcated endoluminal vascular prosthesis that has a main graft portion and at least a first branch graft portion The guidewire assembly include a hollow guidewire sheath having a restraint mechanism, such as a tubular sheath, for constraining a branch graft portion of the vascular prosthesis and an inner core wire that is slidably insertable into a central lumen of the hollow guidewire sheath. In use, the guidewire assembly may be used with a deployment catheter to deploy the bifurcated vascular prosthesis and leave the inner core wire in position in the patient's aorta, extending through the main graft portion of the vascular prosthesis.
Owner:ENDOLOGIX LLC

Modular vascular prosthesis having axially variable properties and improved flexibility and methods of use

The present invention provides a vascular prosthesis featuring a plurality of modular segments interengaged by flexible, and preferably lockable, inter-engageable elements forming joints. The segments may have a number of different mechanical properties and may be assembled by the clinician to customize the prosthesis for a specific patient or application.
Owner:ABBOTT LAB VASCULAR ENTERPRISE

Fracture-resistant helical stent incorporating bistable cells and methods of use

Vascular prostheses and methods of use are provided, wherein the vascular prosthesis includes a plurality of bistable unit cells configured to form a helical structure. A visualization catheter also is provided for use ensuring accurate measurement of a lesion and ensuring delivery and placement of the vascular prosthesis.
Owner:CELONOVA STENT

Modular vascular prosthesis and methods of use

The present invention relates a vascular prosthesis and related assembly methods that includes a plurality of modular segments inter-engaged by flexible, and preferably lockable, inter-engageable elements forming joints or other connector areas. The segments may have a number of different mechanical properties and may be assembled by the clinician, through mechanical or chemical joining, to customize the prosthesis for a specific patient or application.
Owner:ABBOTT LAB VASCULAR ENTERPRISE

Decellularized vascular prostheses resistant to thrombus occlusion and immunologic rejection

InactiveUS20010044654A1Pharmaceutical containersMedical packagingAneurysm ruptureThrombus
The present invention relates to decellularized vascular prostheses that are resistant to thrombus occlusion and have a low level of immunogenicity. The vascular prostheses are denuded of cells, and coated with an anti-thrombogenic agent and a growth factor that promotes recellularization and further reduces the immunogenicity. The prostheses have high mechanical strength, resist aneurysm rupture, and allow for secure surgical sutures while maintaining structural integrity. The present invention provides vascular prostheses that are blood vessels, valves or portions of vessels containing valves. The present invention is also useful for coating synthetic vascular stents.
Owner:BAYLOR COLLEGE OF MEDICINE

Self expanding bifurcated endovascular prosthesis

Disclosed is a bifurcated tubular endoluminal vascular prosthesis, useful in treating, for example, an abdominal aortic aneurysm. The prosthesis comprises a self expandable wire support structure surrounded at least in part by a flexible tubular membrane. A delivery catheter and methods are also disclosed.
Owner:ENDOLOGIX LLC

Bifurcation graft deployment catheter

Disclosed is a deployment catheter for deploying a tubular endoluminal vascular prosthesis, useful in treating, for example, an abdominal aortic aneurysm. The deployment catheter includes a proximal tubular section and a distal tubular section which are axially movable in opposite directions to deploy a prosthesis. A central core extends throughout the proximal tubular section and into the distal tubular section. A reinforcing structure is carried by the central core, spanning the junction between the proximal tubular section and distal tubular section, to improve flexibility characteristics of the catheter. In one embodiment, the proximal tubular section and / or distal tubular section are rotationally linked to the central core.
Owner:ENDOLOGIX LLC

Plasma surface graft process for reducing thrombogenicity

InactiveUS20050102025A1Enhance its interfacial reaction with a biological environmentSimple designPharmaceutical containersPretreated surfacesThrombogenicityVascular prosthesis
In accordance with the present invention, there is provided a novel process for modifying the surface properties of a material that is suitable for contact with animal tissue so as to enhance its hemocompatibility and make it less thrombogenic when in use. This process comprises: Exposing the surface of the material to plasma treatment conditions in order to create reactive groups on said surface; activating a molecule with an activator to produce a reactive molecular species capable of forming convalent bonds with the reactive groups created on the surface of the material to form convalent bonds. The invention further encompasses the materials produced by this process as well as devices, such as vascular prosthesis, that are comprised of these process-modified materials.
Owner:UNIV LAVAL

Vascular Prosthetic Delivery Device And Method Of Use

ActiveUS20130274856A1Easy to controlMinimizing potential disruptionStentsBlood vesselsLocking mechanismEngineering
A delivery device includes a guidewire catheter and a delivery assembly extending about the guidewire catheter. The delivery assembly includes a locking mechanism that selectively engages a proximal handle of the delivery assembly with a push rod to which a vascular prosthesis is directly or indirectly attached. When an actuator selectively disengages the proximal handle from the handle body, rotation of the proximal handle is independent of longitudinal movement of the vascular prosthesis relative to the handle body, whereby the proximal handle can be moved along the handle body with rotation.
Owner:BOLTON MEDICAL INC

Bifurcated graft deployment systems and methods

A deployment catheter for deploying an endoluminal vascular prosthesis that has at least a main graft portion and a first branch graft portion. The deployment catheter preferably comprises an elongate, flexible catheter body having a proximal end and a distal end, and an outer sheath and an inner core that is axially moveable with respect to the outer sheath. The catheter preferably comprises a main graft restraint that has a main graft release mechanism comprising a main graft sheath and a suture threaded through a plurality of the openings in the main graft sheath. The catheter further comprises at least one branch graft restraint comprising at least one branch graft release mechanism.
Owner:ENDOLOGIX LLC

Delivery catheter for ribbon-type prosthesis and methods of use

The present invention is directed to a delivery catheter for use in deploying a vascular prosthesis having a self-expanding radial distal section joined to a helical section for use in a wide range of interventional applications. The delivery catheter comprises an elongated member having a balloon disposed adjacent to a distal end of the member, means for engaging the distal section of the vascular prosthesis against axial translation, and a sheath that restrains the vascular prosthesis against the elongated member during transluminal delivery. The balloon also may be used to perform angioplasty of a stenosis located within the vessel prior to deployment of the vascular prosthesis. Methods of using the delivery catheter of the present invention also are provided.
Owner:NOVOSTENT CORP

Method of Making an Endoluminal Vascular Prosthesis

A flat sheet of woven material includes warp yarns and weft yarns interlaced at substantially right angles to each other. A graft material is cut from the flat sheet of woven material such that the graft material includes a graft material longitudinal axis and the warp yarns are disposed at an angle relative to the graft material longitudinal axis. The warp yarns and weft yarns are not parallel to or perpendicular to the graft material longitudinal axis. The graft material is formed into the shape of an endoluminal prosthesis, such as by rolling opposing edges towards each other and securing the opposing edges to each other. The endoluminal prosthesis thus includes warp yarns disposed at an angle relative to the prosthesis longitudinal axis.
Owner:MEDTRONIC VASCULAR INC

Insertion catheter for vascular prosthesis

With an insertion catheter for inserting a vascular prosthesis into a vessel, with an elongate, substantially tubular catheter cover having a proximal and a distal end, with an outlet for the vascular prosthesis provided at the distal end, in order to make insertion of the vascular prosthesis into the vessel particularly safe and simple, in particular, to provide the vascular prosthesis with protection against twisting, it is proposed that the outlet have a cross-sectional shape differing from a circular shape, and that the cross-sectional area defined by the outlet area be smaller than the cross-sectional area of the vascular prosthesis inserted in the vessel in the opened, unexpanded state.
Owner:AESCULAP AG

Composite Vascular Prosthesis

InactiveUS20090099652A1Modifies structure and morphologyInhibit migrationStentsBlood vesselsVascular prosthesisDrug biological activity
A novel treatment for atherosclerotic vascular disease is described utilizing the implantation of a thin, conformable biocompatible prosthesis constructed from a composite of various structural and therapeutic scaffolds in combination with one or more bioactive agents. This prosthesis can be delivered into position over a lesion in order to passivate atherosclerotic plaques with minimal remodeling of the artery, or alternatively can be applied with a balloon to passivate the remodeled site. The composite prosthesis itself provides mild structural reinforcement of the vessel wall and an evenly distributed platform for the introduction of bioactive therapeutic agents.
Owner:PRESCIENT MEDICAL
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products