Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

119results about How to "Reduce blockiness" patented technology

System and method for progressively transforming and coding digital data

A system and method facilitating progressively transforming and coding digital pictures is provided. The present invention via employment of a multi-resolution lapped transform provides for progressive rendering as well as mitigation of blocking artifacts and ringing artifacts as compared to many conventional compression systems. The invention includes a color space mapper, a multi-resolution lapped transform, a quantizer, a scanner and an entropy encoder. The multi-resolution lapped transform outputs transform coefficients, for example, first transform coefficients and second transform coefficients. A multi-resolution representation can be obtained utilizing second transform coefficients of the multi-resolution lapped transform. The color space mapper maps an input image to a color space representation of the input image. The color space representation of the input image is then provided to the multi-resolution lapped transform. The quantizer receives the first transform coefficients and / or the second transform coefficients and provides an output of quantized coefficients for use by the scanner and / or the entropy encoder. The scanner scans the quantized coefficients in order to produce a one-dimensional vector for use by the entropy encoder. The entropy encoder encodes the quantized coefficients received from the quantizer and / or the scanner resulting in data compression.
Owner:ZHIGU HLDG

Super-resolution image reconstruction method using analysis sparse representation

ActiveCN103049885AHas sparse propertiesEasy access to training sourcesImage enhancementGeometric image transformationGreek letter betaImaging processing
The invention relates to a super-resolution image reconstruction method based on analysis sparse representation, belonging to the technical field of image processing. The method comprises the following steps of: performing dictionary training according to a training sample set; and training a high-resolution dictionary and a low-resolution dictionary for an extracted feature; converting an image to be input from an RGB (Red, Green and Blue) space into a 1 alpha beta space and dividing into blocks of a same size; performing two kinds of operation on the blocks, wherein one is that each block is amplified by using the conventional amplification method and the other one is that an residual image of each block is extracted, sparse representation of the residual image in the low-resolution dictionary is calculated, and then the residual image is reconstructed in the high-resolution dictionary to obtain a reconstructed residual image; summarizing results of the two steps, converting back into the RGB space and performing back projection to obtain the reconstructed super-resolution image. According to the method, the image reconstruction noise can be obviously reduced, and detail features are kept; and meanwhile, the method has the advantages of easiness in operation and wide application.
Owner:CHINACCS INFORMATION IND

Object and fractal-based binocular three-dimensional video compression coding and decoding method

The invention provides an object and fractal-based binocular three-dimensional video compression and decompression method. In binocular three-dimensional video coding, a left channel is used as a basic layer, a right channel is used as an enhancement layer, and the left channel is encoded by an independent motion compensation prediction (MCP) mode. The object and fractal-based binocular three-dimensional video compression coding method comprises the following steps of: firstly, acquiring a video object partition plane, namely an Alpha plane by a video partition method, encoding the initial frame of a left eye through block discrete cosine transformation (DCT), and performing block motion estimation / compensation coding on a non-I frame of the left eye; secondly, determining the area attribute of an image block by utilizing the Alpha plane, and if the block is not within a video object area of the current code, not processing an external block, and if the block is within the video object area of the current code completely, searching the most similar matching block by a full-searching method in a previous frame of an internal block, namely a reference frame searching window of a left eye video; and finally, compressing coefficients of an iterated function system by a Huffman coding method, and if part of pixels of the block are within the video object area of the current code, and the other part of pixels are not within the video object area of the current code, processing a boundary block independently. The right channel is encoded by a MCP mode and a disparity compensation prediction (DCP) mode, the MCP is similar to the processing of the left eye, and the block with the minimum error is used as a prediction result. When the DCP coding mode is performed, the polarization and directionality in a three-dimensional parallel camera structure are utilized fully.
Owner:BEIHANG UNIV

Remote sensing image super resolution reconstruction method and system based on depth convolution network

The invention provides a remote sensing image super resolution reconstruction method and a system based on a depth convolution network. The method comprises steps: a to-be-processed remote sensing image is converted to YCbCr space from RGB space, and brightness space and chromaticity space are separated; a multilayer depth convolution network is built, a super resolution reconstruction model is built based on the multilayer depth convolution network, the super resolution reconstruction model is used for reconstructing the brightness space, and brightness space after reconstruction is obtained; with the brightness space after reconstruction as a guide graph, the chromaticity space is guided for joint bilateral filtering, and chromaticity space after reconstruction is obtained; the brightness space after reconstruction and the chromaticity space after reconstruction are integrated, the to-be-processed remote sensing image after integration is returned to the RGB space from the YCbCr space, a super resolution image is obtained, and the super resolution image has a higher resolution than the to-be-processed remote sensing image. The above method and the system, in a condition of not relying on a multi-temporal remote sensing image sequence in the same scene, realize super resolution reconstruction in view of the remote sensing image, and the image resolution is enhanced.
Owner:INST OF REMOTE SENSING & DIGITAL EARTH CHINESE ACADEMY OF SCI

Nuclear magnetic resonance image reconstruction method based on sparse representation and non-local similarity

The invention relates to a nuclear magnetic resonance image reconstruction method based on sparse representation and non-local similarity, and mainly aims to improve the reconstruction quality of a nuclear magnetic resonance image. The method comprises the following specific steps: firstly, sampling a Fourier transform coefficient corresponding to the nuclear magnetic resonance image by adopting a variable-density random down-sampling method, and performing Fourier inversion on sampled data to obtain an initial reference image for reconstructing; secondly, blocking the reference image to obtain similar structural characteristics of each type of image sub-blocks and obtain corresponding dictionaries of each type of image sub-blocks and sparse representation coefficients of the image sub-blocks; lastly, estimating the original image by using the non-local similarity of the image sub-blocks, restraining the sparse coefficients of the image sub-blocks, combining the sparsity of the image in a wavelet domain, and performing iterative reconstruction through a hybrid regular term solving model. By adopting the method, the non-local similarity of the image is fully utilized, complex textures in the image can be effectively reconstructed, and the quality of a reconstructed quality is improved.
Owner:HANGZHOU DIANZI UNIV

System and method for progressively transforming and coding digital data

A system and method facilitating progressively transforming and coding digital pictures is provided. The present invention via employment of a multi-resolution lapped transform provides for progressive rendering as well as mitigation of blocking artifacts and ringing artifacts as compared to many conventional compression systems. The invention includes a color space mapper, a multi-resolution lapped transform, a quantizer, a scanner and an entropy encoder. The multi-resolution lapped transform outputs transform coefficients, for example, first transform coefficients and second transform coefficients. A multi-resolution representation can be obtained utilizing second transform coefficients of the multi-resolution lapped transform. The color space mapper maps an input image to a color space representation of the input image. The color space representation of the input image is then provided to the multi-resolution lapped transform. The quantizer receives the first transform coefficients and / or the second transform coefficients and provides an output of quantized coefficients for use by the scanner and / or the entropy encoder. The scanner scans the quantized coefficients in order to produce a one-dimensional vector for use by the entropy encoder. The entropy encoder encodes the quantized coefficients received from the quantizer and / or the scanner resulting in data compression.
Owner:ZHIGU HLDG

Fractal-based binocular stereoscopic video compression coding/decoding method

The invention provides a fractal-based binocular stereoscopic video compression and decompression method. In binocular stereoscopic video coding, a left channel is taken as a basic layer, a single motion compensation predictive mode (MCP) is adopted for coding, and the method comprises the following steps of: performing block DCT transformation coding on a left-eye start frame, performing motion estimation/compensation coding on a left-eye non-I frame, and calculating the pixel sum and the sum of squares of pixels of subblock domain and father block domain-related subblocks; searching the most similar matching block by using a full search method in a previous frame, namely a reference frame searching window of left-eye video; and finally compressing the coefficient of an iterated function system by using a Huffman coding method. A right channel is taken as an enhancement layer, the MCP and a parallax compensation predictive mode (DCP) are adopted for coding, and the lowest error is selected as a predicted result. During the DCP coding mode, the polalization and directionality in a stereoscopic parallel shooting structure are fully utilized; and the corresponding decompression process comprises the following steps of: for the left eye, decoding the start frame I by adopting a reverse DCT transformation mode, and performing Huffman decoding on the non-I frame so as to acquire the coefficient of the iterated function system; performing macrolbock-based decoding, calculating the pixel sum and the sum of squares of pixels of father block domain-related subblocks in the previous frame; and for a right eye, calculating the pixel sum and the sum of squares of pixels of the father block domain-related subblocks in the right-eye previous frame and a left-eye corresponding frame.
Owner:BEIHANG UNIV

Color image encryption method based on Latin square scrambling

The invention relates to a color image encryption method based on Latin square scrambling. Plaintext keys r1, g1 and b1 are calculated through utilization of R, G and B components of a color plaintextimage, an initial value and a parameter obtained through calculation based on the keys are substituted into a chaotic system, and three groups of chaotic sequences are generated; the chaotic sequences for scrambling and diffusion are selected through utilization of a chaotic sequence selection mechanism based on the plaintext and digital arrangement; and a final ciphertext image is obtained through adoption of a block scrambling policy based on a Latin square and the chaotic sequences, and diffusion operation based on the plaintext and a scrambled image. The encryption method is closely related to the plaintext, so the plaintext attack resistance is improved. The employed chaotic system is an improved chaotic system, a chaotic characteristic is good, the randomness is high and a key spaceis great, so a security level is further improved. A simulation result and safety analysis show that according to the encryption provided by the invention, an image complete encryption demand can besatisfied, the encryption efficiency is high, and the robustness is high.
Owner:HENAN UNIVERSITY

Fractal-based video compression and decompression method

The invention provides a fractal-based video compression and decompression method. The compression method is a novel video compression and encoding method which adopts the fractal iteration principle for video encoding, and comprises the following steps: encoding a starting frame through block-DCT transformation, and carrying out block motion estimation/compensation coding for a non-I frame, which comprises calculating the sum and sum of squares of the pixels of sub-blocks related to sub-block domains and parent-block domains, finding a most similar matching block in a previous frame search window through full search, and finally compressing factors of an iteration function system through Huffman encoding. The corresponding decompression method comprises the following steps: decoding the I frame through anti-DCT transformation, carrying out Huffman decoding for the non-I frame to obtain the factors of the iteration function system, and carrying out macroblock-based decoding, which comprises calculating the sum and sum of squares of the pixels of the sub-blocks relevant to the parent-block domains, and decoding the macroblocks in the current frame in sequence. The method improves the traditional method of fractal video compression, and not only greatly increases the compression ratio and the peak signal-noise ratio, but also improves the encoding speed, thereby enhancing the fractal video compression and decoding performance, and making the fractal video compression and decoding more practical.
Owner:BEIHANG UNIV

Object and fractal-based multi-ocular three-dimensional video compression encoding and decoding method

The invention discloses an object and fractal-based multi-ocular three-dimensional video compressing and decompressing method. In multi-ocular three-dimensional video encoding, a middle ocular video is selected as a reference ocular video and is compressed by using a motion compensation prediction (MCP) principle; and other ocular videos are compressed by using a disparity compensation prediction (DCP)+MCP-based principle. Taking a trinocular video as an example, the middle ocular video is selected as the reference ocular video and is encoded by using a single MCP mode principle, wherein the method comprises the following steps of: first, acquiring a video object segmentation plane, namely an Alpha plane, by a video segmentation method, encoding a start frame by adopting discrete cosine transform (DCT), and performing block motion estimation/compensation encoding on a non-I frame; then, judging the area attribute of an image block by utilizing the Alpha plane, if the block is not in a currently encoded video object area, then not processing the external block, and if all of the block is in the currently encoded video object area, searching a most similar matching block in a reference frame of a previous frame, namely the middle ocular video, by a full search method; and finally, compressing coefficients of an iteration function system by utilizing a Huffman encoding method, if part pixels of the block are in the currently encoded video object area while part pixels are not in the currently encoded video object area, independently processing a boundary block. A left ocular video and a right ocular video are respectively encoded by adopting the MCP+DCP mode; and when the DCP encoding mode is performed, the polarization and the direction in a three-dimensional parallel camera structure are fully utilized.
Owner:BEIHANG UNIV
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products