Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

33 results about "Oligonucleotide Linker" patented technology

Methods and compositions for detection of small rnas

Currently, the circularization of small RNAs is broadly regarded as an obstacle in ligation-related assays and explicitly avoided while short lengths of linear RNA targets is broadly recognized as a factor limiting use of conventional primers in PCR-related assays. In contrast, the disclosed invention capitalizes on circularization of small RNA targets or their conjugates with oligonucleotide adapters. The circular RNA templates provide amplification of the target sequences via synthesis of multimer nucleic acids that can be either labeled for direct detection or subjected to PCR amplification and detection. Structure of small circular RNAs and corresponding multimeric nucleic acids provide certain advantages over current methods including flexibility in design of conventional RT and PCR primers as well as use of 5′-overlapping dimer-primers for efficient and sequence-specific amplification of short target sequences. Our invention also reduces number of steps and reagents while increasing sensitivity and accuracy of detection of small RNAs with both 2′OH and 2′-OMe at their 3′ ends. Our invention increase sensitivity and specificity of detection of microRNAs and other small RNAs with both 2′OH and 2′-OMe at their 3′ ends while allowing us to distinguish these two forms from each other.
Owner:REALSEQ BIOSCI INC

Single-chain antibody of broad-spectrum anti-p21ras protein and preparation method thereof

The invention discloses a single-chain antibody of broad-spectrum anti-p21ras protein and a preparation method thereof. The gene segment of the single-chain antibody is constructed by connecting light and heavy chain variable region gene segments of monoclonal antibody hybridoma cell strains of the broad-spectrum anti-p21ras protein through flexible oligonucleotide linkers; the gene segment of the single-chain antibody is connected with a phagemid expression vector to construct recombinant phagemid; the recombinant phagemid is converted into amber inhibiting colon bacillus TG1 to perform fusion expression; the positive recombinant phagemid is identified by using indirect ELISA screening through phage library exhibition; the positive recombinant phagemid is converted into non-amber inhibiting colon bacillus BL21 (DE3) to perform soluble expression of the single-chain antibody; indirect enzyme-linked immunosorbent assay and immune cell and tissue chemical experiments prove that the single-chain antibody for the soluble expression has strong binding specificity with three p21ras proteins of H-ras, K-ras and N-ras and high affinity; and the single-chain antibody is used for constructing small molecular antibodies such as intracellular antigens and the like and used for diagnosis and research of ras gene related tumors.
Owner:成都军区昆明总医院

Method for assembly of polynucleic acid sequences

The present invention provides a method for the assembly of a polynucleic acid sequence from a plurality of nucleic acid sequences in which the polynucleic acid sequence is of a formula Nn+1, in which N represents a nucleic acid sequence and where n is 1 or greater than 1 and each N may be the same or a different nucleic acid sequence, in which the method comprises: (i) providing a first nucleic acid sequence N1 which has an oligonucleotide linker sequence L13 at the 3′-end of the nucleic acid sequence; (ii) providing a second nucleic acid sequence N2 which optionally has an oligonucleotide linker sequence L23′ at the 3′-end of the nucleic acid sequence and which has an oligonucleotide linker sequence L25′ at the 5′-end of the nucleic acid sequence, wherein the 5′-end linker sequence L25′ of nucleic acid sequence N2 is complementary to the 3′-end linker sequence L13′ of nucleic acid sequence N1; (iii) optionally providing one or more additional nucleic acid sequences N, wherein nucleic acid sequence N2 has an oligonucleotide linker sequence L23′ at the 3′-end of the nucleic acid sequence, and wherein said one or more additional nucleic acid sequences N comprises a terminal additional nucleic acid sequence NZ, and wherein each additional nucleic acid sequence N has an oligonucleotide linker sequence at its 3′-end, wherein said terminal additional nucleic acid sequence NZ optionally lacks an oligonucleotide linker sequence at its 3′-end and wherein each additional nucleic acid sequence N has an oligonucleotide linker sequence at its 5′-end, wherein for the first additional nucleic acid sequence N3 the 5′-end linker sequence L35′ is complementary to the 3′-end linker sequence L23′ of nucleic acid sequence N2 and for each second and subsequent additional nucleic acid sequence N the 5′-end linker sequence is complementary to the 3′-end linker sequence of the respective preceding additional nucleic acid sequence; and (iv) ligating said nucleic acid sequences to form said polynucleic acid sequence.
Owner:ITI SCOTLAND

Method For Assembly Of Polynucleic Acid Sequences

The present invention provides a method for the assembly of a polynucleic acid sequence from a plurality of nucleic acid sequences in which the polynucleic acid sequence is of a formula Nn+1, in which N represents a nucleic acid sequence and where n is 1 or greater than 1 and each N may be the same or a different nucleic acid sequence, in which the method comprises: (i) providing a first nucleic acid sequence N1 which has an oligonucleotide linker sequence L13 at the 3′-end of the nucleic acid sequence; (ii) providing a second nucleic acid sequence N2 which optionally has an oligonucleotide linker sequence L23′ at the 3′-end of the nucleic acid sequence and which has an oligonucleotide linker sequence L25′ at the 5′-end of the nucleic acid sequence, wherein the 5′-end linker sequence L25′ of nucleic acid sequence N2 is complementary to the 3′-end linker sequence L13′ of nucleic acid sequence N1; (iii) optionally providing one or more additional nucleic acid sequences N, wherein nucleic acid sequence N2 has an oligonucleotide linker sequence L23′ at the 3′-end of the nucleic acid sequence, and wherein said one or more additional nucleic acid sequences N comprises a terminal additional nucleic acid sequence NZ, and wherein each additional nucleic acid sequence N has an oligonucleotide linker sequence at its 3′-end, wherein said terminal additional nucleic acid sequence NZ optionally lacks an oligonucleotide linker sequence at its 3′-end and wherein each additional nucleic acid sequence N has an oligonucleotide linker sequence at its 5′-end, wherein for the first additional nucleic acid sequence N3 the 5′-end linker sequence L35′ is complementary to the 3′-end linker sequence L23′ of nucleic acid sequence N2 and for each second and subsequent additional nucleic acid sequence N the 5′-end linker sequence is complementary to the 3′-end linker sequence of the respective preceding additional nucleic acid sequence; and (iv) ligating said nucleic acid sequences to form said polynucleic acid sequence.
Owner:ITI SCOTLAND

Method And Device

The present invention provides a method for the assembly of a polynucleic acid sequence from a plurality of nucleic acid sequences in which the polynucleic acid sequence is of a formula Nn+1, in which N represents a nucleic acid sequence and where n is 1 or greater than 1 and each N may be the same or a different nucleic acid sequence, in which the method comprises:
    • (i) providing a first nucleic acid sequence N1 which has an oligonucleotide linker sequence L13′ at the 3′-end of the nucleic acid sequence;
    • (ii) providing a second nucleic acid sequence N2 which optionally has an oligonucleotide linker sequence L23′ at the 3′-end of the nucleic acid sequence and which has an oligonucleotide linker sequence L25′ at the 5′-end of the nucleic acid sequence,
      • wherein the 5′-end linker sequence L25′ of nucleic acid sequence N2 is complementary to the 3′-end linker sequence L13′ of nucleic acid sequence N1;
    • (iii) optionally providing one or more additional nucleic acid sequences N, wherein nucleic acid sequence N2 has an oligonucleotide linker sequence L23′ at the 3′-end of the nucleic acid sequence, and wherein said one or more additional nucleic acid sequences N comprises a terminal additional nucleic acid sequence NZ, and wherein each additional nucleic acid sequence N has an oligonucleotide linker sequence at its 3′-end, wherein said terminal additional nucleic acid sequence NZ optionally lacks an oligonucleotide linker sequence at its 3′-end and wherein each additional nucleic acid sequence N has an oligonucleotide linker sequence at its 5′-end,
      • wherein for the first additional nucleic acid sequence N3 the 5′-end linker sequence L35′ is complementary to the 3′-end linker sequence L23′ of nucleic acid sequence N2 and for each second and subsequent additional nucleic acid sequence N the 5′-end linker sequence is complementary to the 3′-end linker sequence of the respective preceding additional nucleic acid sequence; and
    • (iv) ligating said nucleic acid sequences to form said polynucleic acid sequence;
wherein at least step (iv) is carried out on a microfluidic device.
Owner:ITI SCOTLAND

Method and reagent for constructing nucleic acid single-stranded circular library

The invention discloses a method and reagents for constructing a nucleic acid single-strand circular library. The method comprises the following steps: using a transposase embedding complex to randomly interrupt the nucleic acid to form a first joint at both ends and a gap. Fragment; connect the second linker at the gap; perform the first PCR reaction to obtain the product of connecting the first linker and the second linker sequence at both ends; enzyme digestion to generate a nick, and then perform double-stranded circularization to generate a circular nucleic acid molecule; from Carry out restriction nick translation reaction at the nick; digest the part that has not occurred restriction nick translation reaction; connect the third adapter and oligonucleotide adapter sequence; perform the second PCR reaction to obtain the third adapter and oligonucleotide at both ends respectively The product of the acid linker sequence; isolate the single-stranded nucleic acid; circularize the single-stranded nucleic acid to obtain a single-stranded circular library. The method of the present invention realizes simple and rapid construction of a nucleic acid single-stranded circular library through the combination of transposase breaking and restriction gap translation reaction.
Owner:MGI TECH CO LTD

Whole blood immune repertoire detection method based on high-throughput sequencing technology

The invention provides a whole blood immune repertoire detection method based on high-flux sequencing technology. The method comprises the following steps: (1) directly extracting RNA (ribonucleic acid) from a whole blood sample; (2) carrying out reverse transcription on the RNA to generate single chain cDNA (complementary deoxyribonucleic acid), connecting an oligonucleotide joint sequence to the tail end of the single chain cDNA, carrying out PCR (polymerase chain reaction) reaction on the single chain cDNA subjected to oligonucleotide joint sequence connection by using a universal primer and a special targeted primer P-VDJ (of which the sequence is GAC CTC GGG TGG GAA CAC) as a special primer pair for PCR reaction, and amplifying the immune receptor genome; and (3) carrying out high-flux sequencing. The method of directly extracting the RNA from the whole blood sample is more suitable for clinic; the single target specific primer is utilized to uniformly amplify the variable region of the subtype T cell receptor gene; and a Hi-SEQ 2500 of the Illumina corporation and a bar code are utilized for sequencing, thereby ensuring the lower cost, the sequencing time of less than 48 hours and favorable sequencing depth.
Owner:武汉希望组生物科技有限公司
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products