Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

75 results about "Right atrial" patented technology

Right atrium. The right atrium is one of the four chambers of the heart. The heart is comprised of two atria and two ventricles. Blood enters the heart through the two atria and exits through the two ventricles. Deoxygenated blood enters the right atrium through the inferior and superior vena cava.

Closure devices, related delivery methods, and related methods of use

A device for sealing a patent foramen ovale (PFO) in the heart is provided. The device includes a left atrial anchor adapted to be placed in a left atrium of the heart, a right atrial anchor adapted to be placed in a right atrium of the heart, and an elongate member adapted to extend through the passageway and connect the left and right atrial anchors. A system for delivering the closure device includes side-by-side tubes. A device for retrieving a mis-deployed closure device includes a shaft portion and an expandable retrieval portion.
Owner:ST JUDE MEDICAL CARDILOGY DIV INC

PFO closure devices and related methods of use

ActiveUS20030208232A1Suture equipmentsCatheterAdhesiveSeptum secundum
Devices and methods for sealing a passageway formed by a patent foramen ovale (PFO track) in the heart are provided. One method includes providing an abrading device to the PFO track and abrading the tissue within the PFO track. The abraded tissue forming the PFO track is then held together under pressure, either via lowering right atrial pressure or via applying suction to the septum primum to pull it into apposition against the septum secundum. After a sufficient period of time, the pressure is released and the abraded tissue heals to form a robust seal over the PFO track. Additionally, several devices are provided which can be placed into the PFO track to apply adhesive to the walls of the PFO track. The devices may or may not be left within the PFO track. If the devices are not left within the PFO track, the walls of the PFO track, covered with adhesive, are brought into apposition with one another and adhered together. If the device is left within the PFO track, the device is flattened from an expanded configuration to a flattened configuration, and the walls of the PFO track, adhering to the outer surface of the device, are pulled toward each other as the device flattens. The device may also include interior structure to hold the device in a flattened configuration.
Owner:ST JUDE MEDICAL CARDILOGY DIV INC

Closure devices, related delivery methods, and related methods of use

A device for sealing a patent foramen ovale (PFO) in the heart is provided. The device includes a left atrial anchor adapted to be placed in a left atrium of the heart, a right atrial anchor adapted to be placed in a right atrium of the heart, and an elongate member adapted to extend through the passageway and connect the left and right atrial anchors. The right atrial anchor preferably includes a plurality of arms and a cover attached to the arms. The left atrial anchor preferably also includes a plurality of arms and preferably does not include a cover. Preferably, the elongate member has a first end fixedly connected to the left atrial anchor and a portion, proximal to the first end, passing through the right atrial anchor. Preferably, the elongate member is flexible.
Owner:ST JUDE MEDICAL CARDILOGY DIV INC

Devices and methods for treating heart failure

A device for implanting into an atrial septum of a patient. In some embodiments, the device has a core region to be disposed in an opening in the atrial septum; a distal retention region adapted to engage tissue on a left atrial side of the septal wall; a proximal retention region adapted to engage tissue on a right atrial side of the septal wall; and a retrieval region comprising a plurality of retrieval members, each retrieval member comprising a connector at a proximal end, the connector being adapted to connect to a delivery system. The device has a delivery configuration and a deployed configuration, the core region, distal retention region and proximal retention region each having a smaller diameter in the delivery configuration than in the deployed configuration, the retrieval member connectors being disposed proximal to and radially outward from the opening in the deployed configuration.
Owner:CORVIA MEDICAL

Closure devices, related delivery methods and tools, and related methods of use

A device for sealing a patent foramen ovale (PFO) in the heart is provided. The device includes a left atrial anchor adapted to be placed in a left atrium of the heart, a right atrial anchor adapted to be placed in a right atrium of the heart, and an elongate member adapted to extend through the passageway and connect the left and right atrial anchors. The right atrial anchor preferably includes a plurality of arms and a cover attached to the arms. The left atrial anchor also includes a plurality of arms and preferably does not include a cover. Preferably, the elongate member has a first end of fixedly connected to the left atrial anchor and a portion, proximal to the first end, releasably connected to the right atrial anchor. Preferably, the elongate member is flexible.
Owner:ST JUDE MEDICAL CARDILOGY DIV INC

Method and apparatus for controlling cardiac therapy based on electromechanical timing

Devices and methods for therapy control based on electromechanical timing involve detecting electrical activation of a patient's heart, and detecting mechanical cardiac activity resulting from the electrical activation. A timing relationship is determined between the electrical activation and the mechanical activity. A therapy is controlled based on the timing relationship. The therapy may improve intraventricular dyssynchrony of the patient's heart, or treat at least one of diastolic and systolic dysfunction and / or dyssynchrony of the patient's heart, for example. Electrical activation may be detected by sensing delivery of an electrical stimulation pulse to the heart or sensing intrinsic depolarization of the patient's heart. Mechanical activity may be detected by sensing heart sounds, a change in one or more of left ventricular impedance, ventricular pressure, right ventricular pressure, left atrial pressure, right atrial pressure, systemic arterial pressure and pulmonary artery pressure.
Owner:CARDIAC PACEMAKERS INC

Systems and methods for determining inter-atrial conduction delays using multi-pole left ventricular pacing/sensing leads

Techniques are provided for use by a pacemaker or other implantable medical device for estimating optimal atrio-ventricular pacing delays within a patient. The inter-atrial conduction delays (IACDs) are determined based, at least in part, on atrial far-field (AFF) signals sensed using a multi-pole left ventricular (LV) lead, such as an LV lead implanted via the coronary sinus (CS) with a plurality of electrodes. In one example, for intrinsic atrial events, the IACD is equal to the interval from the beginning of a P-wave detected via a right atrial lead and the end (or peak) of an AFF event detected via a left atrial ring electrode of a CS / LV lead. For paced atrial events, the IACD is instead equal to the interval from the A-pulse to the end (or peak) of the AFF event detected via the CS / LV lead. AV / PV pacing delays are then calculated based on the IACD adjusted by an offset.
Owner:PACESETTER INC

Cardiac tissue cinching

A method is provided including making an opening (300) through an atrial septum (302) at a septal site (304) at least 5 mm from a fossa ovalis (330). A first tissue anchor (204) is endovascularly advanced to a left-atrial site (306) on an annulus of a mitral valve (310) or a wall of a left atrium (308) above the annulus. The first tissue anchor (204) is implanted at the left-atrial site (306). A second tissue anchor (24) is endovascularly advanced to a right-atrial site (320) on an annulus of a tricuspid valve (207) or a wall of a right atrium (200) above the annulus. The second tissue (24) anchor is implanted at the right-atrial site (320). The left-atrial site (306) and the right-atrial site (320) are approximated by tensioning a tether (22) that passes through the opening (300) of the atrial septum (302) and connects the first and the second tissue anchors (204, 24). Other embodiments are also described.
Owner:4TECH INC OXO CAPITAL

Systems and methods for optimizing ventricular pacing based on left atrial electromechanical activation detected by an av groove electrode

Techniques are provided for use with an implantable cardiac stimulation device equipped with a multi-pole left ventricular (LV) lead having a proximal electrode implanted near an atrioventricular (AV) groove of the heart of the patient. A left atrial (LA) cardioelectrical event is sensed using the proximal electrode of the LV lead and a corresponding LA cardiomechanical event is also detected, either using an implantable sensor or an external detection system. The electromechanical activation delay between the LA cardioelectrical event and the corresponding LA cardiomechanical event is determined and then pacing delays are set based on the electromechanical activation delay for use in controlling pacing. The pacing delays can include, e.g., AV delays for use with biventricular cardiac resynchronization therapy (CRT) pacing. Other techniques described herein are directed to exploiting right atrial (RA) cardioelectrical events detected via an RA lead for the purposes of setting pacing delays.
Owner:PACESETTER INC

Method and system for monitoring ventricular function of a heart

A method for monitoring a right atrial pressure (RAP) and a left atrial pressure (LAP) for diagnosis of a heart condition includes positioning a transseptal device with respect to a pulmonary artery to monitor at least one flow characteristic of blood through the pulmonary artery. The transseptal device is configured to generate one or more signals representative of the at least one flow characteristic. A right ventricular end diastolic pressure (RVEDP) and a left ventricular end diastolic pressure (LVEDP) are detected to facilitate monitoring the heart condition.
Owner:ENDOTRONIX

Device And Method For Peri-Hisian Pacing And/Or Simultaneous Bi-Ventricular or Tri-Ventricular Pacing For Cardiac Resynchronization

InactiveUS20110230922A1Maximize cardiac outputRapid depolarizationHeart defibrillatorsHeart stimulatorsVentricular dysrhythmiaSudden death
The present invention provides a pacing device and method that allows for preferential right atrial, at or near the His bundle, and ventricular pacing, either individually or in combination, including tri-ventricular pacing. The pacing device includes a power source and one or more logic circuits allowing for programmable delivery of pacing to any combination of the right atria, the para-Hisian region, and the right and / or the left ventricles. The pacing device allows the user to select which site(s) to pace as well at the appropriate relative timing of pacing impulse delivery to any of these three previously mentioned sites. The device is constructed and arranged to be combined with an atrial sensing / pacing electrode to allow for atrio-ventricular sequential tri-ventricular pacing or variants of such. Also, a defibrillator lead can be incorporated into the device to allow for protection from ventricular arrhythmias and sudden death.
Owner:FISHEL ROBERT S

Closure devices, related delivery methods and tools, and related methods of use

A device for sealing a patent foramen ovale (PFO) in the heart is provided. The device includes a left atrial anchor adapted to be placed in a left atrium of the heart, a right atrial anchor adapted to be placed in a right atrium of the heart, and an elongate member adapted to extend through the passageway and connect the left and right atrial anchors. The right atrial anchor preferably includes a plurality of arms and a cover attached to the arms. The left atrial anchor also includes a plurality of arms and preferably does not include a cover. Preferably, the elongate member has a first end of fixedly connected to the left atrial anchor and a portion, proximal to the first end, releasably connected to the right atrial anchor.
Owner:ST JUDE MEDICAL CARDILOGY DIV INC

Adaptive cardiac resyncronization therapy and vagal stimulation system

An adaptive feed-back controlled system for regulating a physiological function of a heart in which a hemodynamic sensor continuously monitors the physiological performance of the heart. Three implanted electrodes sense and pace the right atrial, right ventricle and left ventricle. A learning neural network module receives and processes information for the electrodes (18) and sensors (22), and is controlled by a deterministic module for limiting said learning module. A pulse generator (16), is also controlled by the deterministic module, and stimulates both the heart and the vagus (20).
Owner:ROM RAMI

System and Method for ATP Treatment Utilizing Multi-Electrode Left Ventricular Lead

An implantable medical device includes a lead configured to be located proximate to the left ventricle (LV) of the heart, the lead including multiple LV electrodes to sense cardiac activity at multiple LV sensing sites. The a detection module to detect an arrhythmia that represents at least one of a tachycardia and fibrillation based at least in part on the cardiac activity sensed at the multiple LV sensing sites. The ATP therapy module to identify at least one of an ATP configuration or an ATP therapy site based on the cardiac sensed activity at the LV sensing sites, the ATP therapy module to control delivery of antitachycardia pacing (ATP) therapy at the ATP therapy site. The ATP therapy module delivers a stimulus to electrodes at one or more of an LV site, right ventricular (RV) site and right atrial (RA) site, the detection module to sense evoked responses at the LV sensing sites, the ATP therapy module to designate the ATP therapy site to include at least the LV sensing site with a shortest activation time relative to the one or more LV site, RV site and RA site where the stimulus is delivered.
Owner:PACESETTER INC

Atrioventricular valve bracket of artificial valve of dual discal straps

The present invention relates to a kind of bidiscoid antrioventricular valve scaffold with artificial valve. Said bidiscoid scaffold is made up by using shape memory alloy filament through a certain weaving process. It is divided into right atrial discoid face, intermediate waist portion and right ventricular discoid face, the right atrial discoid face and right ventricular discoid face are made into the form of horn mouth, the diameter of said horn mouth is greater than that of intermediate waist portion, the height of the waist portion is half of diameter of waist portion, the diameter of right atrial discoid face is identical to that of right ventricular discoid face, and said valve is formed from wave-shaped valve ring and valve leaf. Besides, said invention also provides the concrete structure of said wave-shaped valve ring and valve leaf.
Owner:SECOND MILITARY MEDICAL UNIV OF THE PEOPLES LIBERATION ARMY

Left atrial access apparatus and methods

Left atrial access apparatus and methods are described herein. Different parameters, such as oxygen saturation difference, between the left and right atrial chambers is utilized to guide a needle or catheter into a desired position within the heart. Various sensing elements can be utilized to detect the physiological parameter difference, such as oxygen levels, in the left atrium. The sensor can be carried by the needle, at its tip or along its body, and can measure the physiological parameter levels contained in the blood, fluid, or tissue.
Owner:HANSEN MEDICAL INC

Use of autonomic nervous system neurotransmitters inhibition and atrial parasympathetic fibers ablation for the treatment of atrial arrhythmias and to preserve drug effects

InactiveUSRE42961E1Increased occurrence of initiation of atrial flutterShorten the construction periodDiagnosticsHeart defibrillatorsNervous systemRight atrium
Atrial arrhythmias, a major contributor to cardiovascular morbidity, are believed to be influenced by autonomic nervous system tone. The main purpose of this invention was to highlight new findings that have emerged in the study of effects of autonomic nervous system tone on atrial arrhythmias, and its interaction with class III antiarrhythmic drug effects. This invention evaluates the significance of sympathetic and parasympathetic activation by determining the effects of autonomic nervous system using a vagal and stellar ganglions stimulation, and by using autonomic nervous system neurotransmitters infusion (norepinephrine, acetylcholine). This invention evaluates the autonomic nervous system effects on the atrial effective refractory period duration and dispersion, atrial conduction velocity, atrial wavelength duration, excitable gap duration during a stable circuit (such atrial flutter circuit around an anatomical obstacle), and on the susceptibility of occurrence (initiation, maintenance and termination) of atrial re-entrant arrhythmias in canine. This invention also evaluates whether autonomic nervous system activation effects via a local neurotransimitters infusion into the right atria can alter those of class III antiarrhythmic drug, sotalol, during a sustained right atrial flutter. This invention represents an emergent need to set-up and develop a new class of anti-cholinergic drug therapy for the treatment of atrial arrhythmias and to combine this new anti-cholinergic class to antiarrhythmic drugs. Furthermore, this invention also highlights the importance of a local application of parasympathetic neurotransmitters / blockers and a catheter ablation of the area of right atrium with the highest density of parasympathetic fibers innervation. This may significantly reduce the occurrence of atrial arrhythmias and may preserve the antiarrhythmic effects of any drugs used for the treatment of atrial re-entrant arrhythmias.
Owner:ST JUDE MEDICAL ATRIAL FIBRILLATION DIV

Cardiac tissue cinching

A method is provided including making an opening (300) through an atrial septum (302) at a septal site (304) at least 5 mm from a fossa ovalis (330). A first tissue anchor (204) is endovascularly advanced to a left-atrial site (306) on an annulus of a mitral valve (310) or a wall of a left atrium (308) above the annulus. The first tissue anchor (204) is implanted at the left-atrial site (306). A second tissue anchor (24) is endovascularly advanced to a right-atrial site (320) on an annulus of a tricuspid valve (207) or a wall of a right atrium (200) above the annulus. The second tissue (24) anchor is implanted at the right-atrial site (320). The left-atrial site (306) and the right-atrial site (320) are approximated by tensioning a tether (22) that passes through the opening (300) of the atrial septum (302) and connects the first and the second tissue anchors (204, 24). Other embodiments are also described.
Owner:4TECH INC OXO CAPITAL

Adaptive Cardiac Resyncronization Therapy and Vagal Stimulation System

An adaptive feed-back controlled system for regulating a physiological function of a heart in which a hemodynamic sensor continuously monitors the physiological performance of the heart. Three implanted electrodes sense and pace the right atrial, right ventricle and left ventricle. A learning neural network module receives and processes information for the electrodes (18) and sensors (22), and is controlled by a deterministic module for limiting said learning module. A pulse generator (16), is also controlled by the deterministic module, and stimulates both the heart and the vagus (20).
Owner:ROM RAMI

Cardiac resynchronization therapy (CRT) method based on self atrioventricular conduction

The invention relates to a cardiac resynchronization therapy (CRT) method based on self atrioventricular conduction. The method comprises the following steps of implanting a right atrium endocardium electrode and a left ventricle epicardium pace-making electrode in a patient of CRT adaptation diseases; connecting electrodes with a pulse generator; setting parameters of the intelligent pulse generator; executing a scanning search program for collecting real-time electrocardiosignals and left ventricle pace-making commands; performing time fixed point measurement and logic algorithm analysis of scanning search resources by the pulse generator, so as to find an AS / AP-VP interval when the most narrow QRS interval occurs; executing timed CRT by the pulse generator during the AS / AP-VP interval; after the abovementioned process is finished, performing electrocardiosignal collection and pace-making scanning search by the pulse generator, re-finding an AS / AP-VP interval when the most narrow QRS interval occurs; executing timed CRT during the AS / AP-VP interval; and repeating the cycle in such a way. The method is characterized by high intelligent degree, wide application, simple operation and low usage cost.
Owner:吴强

Systems and methods for assessing the sphericity and dimensional extent of heart chambers for use with an implantable medical device

Techniques are provided for use with an implantable medical device for assessing left ventricular (LV) sphericity and atrial dimensional extent based on impedance measurements for the purposes of detecting and tracking heart failure and related conditions such as volume overload or mitral regurgitation. In some examples described herein, various short-axis and long-axis impedance vectors are exploited that pass through portions of the LV for the purposes of assessing LV sphericity. In other examples, impedance measurements taken along a vector between a right atrial (RA) ring electrode and an LV electrode implanted near the atrioventricular (AV) groove are exploited to assess LA extent, biatrial extent or mitral annular diameter. The assessment techniques can be employed alone or in conjunction with other heart failure detection techniques, such as those based on left atrial pressure (LAP.)
Owner:PACESETTER INC

Pulse condition simulation teaching system

The present invention discloses a pulse condition simulation teaching system. The pulse condition simulation teaching system includes a pulse simulation device, a bionic arm, a control unit and a touch display screen; the pulse simulation device includes a right atrial simulated airbag, a right ventricular simulated airbag, a left atrial simulated airbag, a left ventricular simulated airbag, a pulse power mechanism and a one-way valve; the pulse power mechanism is connected with the right atrial simulated airbag; the left ventricular simulated airbag is connected with the bionic arm; the right atrial simulated airbag, the right ventricular simulated airbag, the left atrial simulated airbag, the left ventricular simulated airbag and the bionic arm and the right atrial simulated airbag are connected with one another sequentially through bionic blood vessels; and the bionic arm, the touch display screen, the pulse power mechanism and the one-way valve are connected with the control unit through electric signals. With the pulse condition simulation teaching system of the invention adopted, the pulse condition of a human body can be simulated accurately, a good opportunity for repeated practice and training can be created for learners, and the learners can strengthen the training of finger feeling of pulse diagnosis and master pulse diagnosis techniques of common pulse conditions in the traditional Chinese medicine soon. The pulse condition simulation teaching system is an ideal teaching tool.
Owner:合肥讯创信息科技有限公司

Cardiac Disease Treatment System

ActiveUS20090221923A1Improve abnormal pumping abilityReliable diagnosisMedical devicesCatheterDiseaseHeart right
Problems To provide a cardiac disease treatment system for accurately diagnosing the functional cause of an abnormality of a cardiac disease by analyzing the hemodynamic state of a patient, automatically performing medication in accordance with the diagnosis result, and treating the cardiac disease.Means for Solving ProblemsThe cardiac disease treatment system is characterized by comprising input means (2) for inputting the cardiac output value of the patient, the left atrial pressure value and / or the right atrial pressure value, first calculating means (31) for calculating the pumping ability value of the left heart or the right heart from the inputted cardiac output and the left or right atrial pressure value, first comparing means (41) for comparing the pumping ability value of the left heart or the right heart with a target pumping ability value, and first medicating means (51) for medicating the patient in accordance with the result of the comparison by the first comparing means (41).
Owner:HEALTH SCI TECH TRANSFER CENT JAPAN HEALTH SCI FOUND
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products