Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

464 results about "Tip clearance" patented technology

Tip clearance is the distance between the tip of a rotating airfoil and a stationary part.

Turbomachine with reduced leakage penalties in pressure change and efficiency

A turbomachine is provided having at least one row of blades oriented at a predetermined stagger. Casing grooves are provided proximate to at least a portion of the tip of the blades. The grooves are oriented substantially normal to the stagger of the blades. The normal of the blade is determined from a chord of the blade. The chord may be taken across a pair of corresponding points one the upstream and downstream end of the blade, hence across the extent of the cross-sectional shape of the blade. Alternatively, a blade chord may be determined over only a portion of the blade, for instance, from a point along the centerline of the upstream end of the blade to a second point on the centerline midway down the blade from the upstream end. Optimally, the grooves are positioned adjacent to the upstream half of the blades, but may continue across the axial extent of the blades. The spacing between grooves can be optimized for blade stagger in order to find an optimal number of grooves that concurrently cross the blade. Additionally, obtaining an optimal groove depth for a particular turbomachine requires knowing only the tip clearance gap as groove depth is directly related to the tip clearance. Furthermore, since the groove may be substantially smaller than prior art casing treatments, fluid recirculation is reduced. The blade-normal groove may take a variety of cross-sectional shapes. Optimally, the aft surface of the groove will have less than a 45° incline to the radial at that point.
Owner:KHALID SYED ARIF

Gas turbine engine having a multi-variable closed loop controller for regulating tip clearance

A gas turbine engine has, in flow series, a compressor section, a combustor, and a turbine section. The gas turbine engine further has a system (i) for cooling the turbine section and (ii) for providing tip clearance control between turbine blades of the turbine section and a plurality of circumferentially distributed segments which form an annular shroud surrounding the outer tips of the turbine blades. The system includes a turbine section cooling sub-system which diverts a first cooling air flow received from the compressor section to a heat exchanger and then to the turbine section to cool components thereof. The first cooling air flow by-passes the combustor and is cooled in the heat exchanger. The turbine section cooling subsystem has a first valve arrangement which regulates the first cooling air flow. The system further includes a tip clearance control sub-system which supplies a second cooling air flow to an engine case to which the segments are mounted. The second cooling air flow regulates thermal expansion of the case and thereby controls the clearance between the segments and the outer tips. The tip clearance control sub-system has a second valve arrangement which regulates the second cooling air flow. The system further includes a closed-loop controller which issues first and second demand signals to respectively the first and the second valve arrangements. Each of the first and second demand signals are determined on the basis of: (i) a value of the first demand signal at a previous time step, and a measurement or estimate of turbine section component temperature, and (ii) a value of the second demand signal at a previous time step, and a measurement or estimate of tip clearance.
Owner:ROLLS ROYCE PLC

Gas turbine engine blade tip clearance apparatus and method

A method for controlling blade tip clearance within a gas turbine engine includes the steps of providing a compressor having at least one first rotor assembly, each first rotor assembly having a plurality of blades with each blade having a blade tip, at least one first stator assembly disposed adjacent at least one first rotor assembly, and a shroud having at least one blade seal surface disposed radially outside of at least one first rotor assembly, wherein the blade tips in each of at least one first rotor assembly has a mating geometry with at least one of at least one blade seal surfaces, and a clearance distance extending between the blade tips and the blade seal surfaces; providing a turbine having at least one second rotor assembly, each second rotor assembly having a plurality of blades with each blade having a blade tip, at least one second stator assembly disposed adjacent at least one second rotor assembly, and the shroud having at least one blade seal surface disposed radially outside of at least one second rotor assembly, wherein the blade tips in each of at least one second rotor assembly has a mating geometry with at least one of at least one blade seal surfaces, and a clearance distance extending between the blade tips and the blade seal surfaces; providing an actuator selectively operable to move at least one rotor assembly relative to the shroud; providing an electronic engine controller having a control logic for operating the actuator; and moving at least one first rotor assemblies and at least one second rotor assembly relative to the shroud using the actuator at a response rate according to the control logic to alter the clearance distance.
Owner:RAYTHEON TECH CORP
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products