Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

79results about How to "Drop in display quality" patented technology

Capacitive touch sensor laminate for display panel device

A capacitive touch sensor laminate for use in a display panel device includes: a dielectric central substrate structure made of a transparent resin material and formed to have flat surfaces, respectively, on opposite sides thereof; a at least one-layer structured coat layer made of a transparent material, formed on each of the flat surfaces, and including at least one refractive index adjusting layer for suppressing visibility of an electrode pattern formed by the transparent electrically conductive layer; and a transparent electrically conductive layer formed on and in adjacent relation to the coat layer. The at least one-layer structured coat layers formed on respective ones of the flat surfaces are configured such that thicknesses of corresponding layers therein on respective opposite sides of the dielectric central substrate structure are set to allow the corresponding layers to become mutually symmetrical across the dielectric central substrate structure.
Owner:NITTO DENKO CORP

Liquid crystal display device

The liquid crystal display device of the present invention includes picture element regions each include a transparent region for providing a transmission mode display and a reflection region for providing a reflection mode display. In each of the picture element regions, the first electrode includes a solid area formed of a conductive film and a non-solid area with no conductive film provided, the liquid crystal layer, in the presence of an applied voltage, forms liquid crystal domains each in a radially-inclined orientation by an inclined electric field generated in the vicinity of the solid area. The second substrate includes a stepped portion having an upper tier located in the reflection region, a lower tier located in the transmission region and a side surface connecting the upper tier and the lower tier to each other, and the side surface of the stepped portion is located in the reflection region and is covered with the second electrode.
Owner:SHARP KK

Display device and manufacturing method of the same

The present invention enhances the mounting accuracy of a drive circuit chip on a substrate thus realizing a display of high quality. Bumps (for example, gold bumps) on the drive circuit chip are used for alignment. Here, to enhance the recognition property of the alignment bumps, a plane shape of a conductive layer which is formed between a semiconductor substrate (Si substrate) of the drive circuit chip and the alignment bump is set to be included within a profile of a plane shape of the alignment bump. That is, by preventing the conductive layer from being observed in a periphery of the alignment bump, it is possible to prevent a photographed pattern of the bump taken by a camera or the like from be influenced by the conductive layer.
Owner:PANASONIC LIQUID CRYSTAL DISPLAY CO LTD +1

Image display device

InactiveUS6956557B2Deterioration of display display contrastDeterioration of sharpnessCathode-ray tube indicatorsNon-linear opticsDisplay deviceComputer science
The present invention is for providing an image display device capable of preventing deterioration of display sharpness and contrast, and capable of improving display quality. An image display medium has a display substrate, having a first electrode, disposed on an image display surface side, a rear substrate having a plurality of second electrodes facing the display substrate, and two kinds of particle groups having different colors and charge characteristics sealed between the display substrate and the rear substrate movably between the first electrode and the second electrodes by an electric field. Before application of a display drive voltage for executing the image display, a voltage is applied to the image display medium by a voltage applying component so as to generate an electric field for moving the particle groups between the second electrodes to adjacent the second electrodes.
Owner:E INK CORPORATION

Display Panel Device Having Touch Input Function

A display panel device has a window, a touch panel laminate and a display panel. The touch panel laminate has: a transparent first substrate layer; a first transparent conductive layer laminated to the first substrate layer through a first undercoat layer; a transparent second substrate layer; and a second transparent conductive layer laminated to the second substrate layer through a second undercoat layer. The second conductive layer faces the first conductive layer through at least the first substrate layer and the first undercoat layer. The first conductive layer is closer to the window than the first substrate layer. A polarizing film layer is bonded to the window, and a λ / 4 retardation film layer is disposed between the polarizing film layer and the touch panel laminate. The display panel is disposed on a side opposite to the window with respect to the touch panel laminate.
Owner:NITTO DENKO CORP

Display panel

A flexible display panel having a first region, a second region, and a third region between the first region and the second region, the display panel including a first display portion on the first region and configured to display a first image, a second display portion on the second region and configured to display a second image, and a first drive portion on the third region and configured to drive at least one of the first display portion and the second display portion.
Owner:SAMSUNG DISPLAY CO LTD

Liquid crystal device, projection type display device, and electronic apparatus

The polarities of pixel electrodes and a common electrode are inverted and a first electrode and a second electrode on an element substrate side are driven during a first period and a second period. At this time, the polarity of the first electrode with respect to a third electrode on an opposing substrate side is the opposite to the polarity of the pixel electrodes with respect to the common electrode, and the polarity of the second electrode with respect to the third electrode on the opposing substrate side is the same as the polarity of the pixel electrodes with respect to the common electrode.
Owner:SEIKO EPSON CORP

Liquid-crystal display device and drive method thereof

Provided are a liquid crystal display device and a drive method thereof, capable of promptly making an afterimage, which is visually recognized at refresh time, visually unrecognizable and reducing power consumption during and after a shift to a target refresh rate. At pause drive time until a target refresh rate is reached, a refresh is performed in divided periods of a first refresh period for performing a refresh at least twice, and a second refresh period for performing a refresh while increasing the number of frames in a non-refresh period from a refresh rate at the end of the first refresh period until the refresh rate becomes the target refresh rate, and the second refresh period is finished when the refresh rate in the second refresh period reaches the target refresh rate, and the pause drive is continued at the target refresh rate.
Owner:SHARP KK

Display device

ActiveUS20170336688A1Display quality be deteriorateEliminate residual electric chargeStatic indicating devicesNon-linear opticsCapacitanceEngineering
An object of the present invention is to suppress deterioration of display quality due to difference in wiring resistance and capacitance between the layers in a display device having a layered wiring structure. In a display device having a layered wiring structure of P layers, and employing a Q-column reversal driving method in which a polarity of a video signal is reversed every Q source bus lines (SL), the plurality of source bus lines SL are wired to the plurality of layers such that taking source bus lines (SL) of a number equal to a double of a least common multiple of P and Q as one group, the number of source bus lines (SL) to which positive video signals are applied matches the number of source bus lines (SL) to which negative video signals are applied in each of the layers in each of horizontal scanning periods.
Owner:SHARP KK

Color filter substrate and display apparatus having the same

In a color filter substrate and a display apparatus having the color filter substrate, the color filter substrate includes a color filter part having at least two adjacent color filters having different colors that are repeatedly arranged in turn. An edge of the color filter part overlaps a light blocking layer pattern in a plan view, wherein no difference in a blocking amount occurs between red, green, and blue lights blocked by the light blocking layer pattern. As a result, deterioration in a display quality of the display apparatus, which is caused by the light blocking layer pattern blocking a light having a certain color, may be prevented.
Owner:SAMSUNG DISPLAY CO LTD

LED driving circuit, LED driving method, and liquid crystal display device

An LED driving circuit, an LED driving method, and a liquid crystal display device, which prevent deterioration of display quality by effectively shortening the time required for starting the LED backlight and stabilizing the driving operations are provided. The LED driving circuit for controlling an LED circuit constituted with one LED or two or more LEDs includes: a duty ratio adjusting circuit unit which generates / outputs adjusting signals for adjusting drive of the LED based on a PWM dimming signal inputted from outside; and a booster circuit unit which applies driving voltages to the LED circuit according to the adjusting signal outputted from the duty ratio adjusting circuit unit. The duty ratio adjusting circuit unit sets the adjusting signal to have a larger duty ratio than that of the PWM dimming signal within an adjusting period set after the power is supplied until the LED circuit starts to connect electrically.
Owner:TIANMA MICRO ELECTRONICS CO LTD

Display control device and display control method

A display control device includes a determining portion determining a frame rate in displaying a frame image on a display portion as a determined frame rate; and a converter converting a present frame rate into the determined frame rate when the determined frame rate is different from the present frame rate. The determining portion determines, based on information about an OSD image, whether the determined frame rate is set to a frame rate identical to or higher than the present frame rate, and when determining that the determined frame rate is set to the frame rate higher than the present frame rate, determines the frame rate as the determined frame rate to display the frame image at the determined frame rate starting from a frame image which is K frames after a currently displayed frame image, where K is an integer not less than 1 and not more than 10.
Owner:PANASONIC INTELLECTUAL PROPERTY MANAGEMENT CO LTD

Image recognition device and liquid crystal display apparatus having the same

In an image recognition apparatus and an LCD apparatus having the same, a plurality of gate lines arranged in a transparent substrate has a predetermined slope such that the gate lines intersect with two sides of the transparent substrate, which are adjacent to or facing each other. A plurality of sensing signal output line arranged in the transparent substrate is substantially perpendicular to the gate lines. An image recognition sensor is formed on a pixel area defined by the gate and sensing signal output lines adjacent to each other. The image recognition sensor senses an image pattern of an object in response to gate driving signals from the gate lines and outputs the sensed image pattern through the sensing signal output lines. Accordingly, the LCD apparatus may prevent appearance of the moiré image and deterioration of the display quality of the LCD panel.
Owner:SAMSUNG DISPLAY CO LTD

Drive device and drive method of light emitting display panel

The ripple component superimposed on the drive power source Va applied to the source electrode of a light emission drive transistor Tr2 is extracted by a ripple component extraction circuit 14, and the ripple component is supplied to one input terminal of a voltage addition circuit 15. A data voltage Vdata transmitted via a data line is input to the other input terminal of the voltage addition circuit 15. Accordingly, in the voltage addition circuit 15, the ripple component extracted by the ripple component extraction circuit 14 is added to the data voltage Vdata treating the data voltage Vdata as the base. Its output is supplied to a scan selection transistor designated by reference character SW1 as Vgate, and the transistor Tr1 is turned on at an addressing time so that the Vgate is supplied to the gate of the light emission drive transistor Tr2. Thus, the gate-to-source voltage Vgs of the light emission drive transistor Tr2 represents an approximately constant value all the time regardless of timing of addressing. Therefore, a problem that intensity change occurs for each scan line so that the display quality of an image is considerably deteriorated can be avoided.
Owner:TOHOKU PIONEER CORP

Liquid crystal display panel and method for manufacturing same

A liquid crystal display panel (100) according to the present invention includes a plurality of spacers configured to hold a gap between a first substrate (10) and a second substrate (30). The plurality of spacers include a plurality of first spacers in a display region and a plurality of second spacers (55) in a non-display region. The first substrate includes a first metal layer (12) and a second metal layer (16), a first transparent conductive layer (22) formed on the second metal layer and in direct contact with the second metal layer, a second inorganic insulating layer (23) formed on the first transparent conductive layer, and an organic insulating layer (25) formed on the second inorganic insulating layer. When viewed from the normal direction of the first substrate, each of the plurality of spacers overlaps with the first transparent conductive layer and the second inorganic insulating layer, and overlaps with the first metal layer and / or the second metal layer. Each of the plurality of spacers includes a part of the organic insulating layer.
Owner:SHARP KK

Display apparatus and control device

It is an object of the invention to inhibit deterioration in display quality and reduce electric power consumption in a display apparatus. A display apparatus (1) includes a display panel (2) having a display provided with a plurality of pixels, a backlight unit (3) configured to emit light to the display, a panel controller (4) configured to control writing operation of supplying each of the pixels with a signal to display an image in the display and a suspension period provided between the writing operation and different writing operation, and a backlight unit controller (5) configured to control light quantity of the backlight unit (3) in synchronization with writing operation performed before or after the suspension period.
Owner:SHARP KK

Display

To provide a display which can improve viewing angle dependency of a contrast ratio at least in a specific azimuth without design change of a basic structure of a display element, limitation to white display state or black display state, and deterioration in display quality in other directions. The above-mentioned display is a display comprising: a display element with a contrast ratio dependent on a viewing angle; and an anisotropic scattering film having an anisotropic scattering layer, wherein the anisotropic scattering film is located on a viewing screen side of the display element and has a scattering central axis in substantially the same azimuth as an azimuth in which a contrast ratio of the display element in a direction inclined by a certain angle from a normal direction of a viewing screen of the display element has an extreme value.
Owner:SHARP KK +1

Liquid crystal display device and liquid crystal display method

A liquid crystal display device (101) including a liquid crystal panel (4) and an LED backlight (5) which is provided with a plurality of LEDs (5R, 5G, and 5B) that emit light of different colors from a backside of the liquid crystal panel (4), the liquid crystal display device (1), in accordance with a video signal supplied thereto, (i) displaying a color image by controlling an aperture ratio of the liquid crystal panel (4) and luminances of the respective plurality of LEDs (5R, 5G, and 5B), and (ii) controlling the luminances of the respective plurality of LEDs (5R, 5G, and 5B) by pulse width modulation, the liquid crystal display device (101) includes: period dividing means (15) for dividing a frame of a video signal into a plurality of periods; and a pulse width modulating section (20) which generates a pulse signal for causing each of the plurality of LEDs (5R, 5G, and 5B) to emit light so that for each of the plurality of periods into which the period dividing means (15) has divided the frame, the plurality of LEDs (5R, 5G, and 5B) emit light while overlapping with each other. According to this, a deterioration in display quality is prevented by reducing a variation between a luminance ratio set in accordance with each frame and a luminance ratio of light transmitted through a liquid crystal panel.
Owner:SHARP KK

Drive method and a drive device for an electrophoretic display panel, an electrophoretic display device, and an electronic device

A drive method for an electrophoretic display panel having one electrode as a common electrode and another electrode divided into a plurality of segment electrodes, the drive method having steps of: applying pulses that change between two different potential levels to the common electrode; applying pulses at one of the two potential levels to the segment electrode of a segment that changes display state to produce a potential difference to the pulse applied to the common electrode; applying pulses of the same phase and potential as the pulses applied to the common electrode to the segment electrode of a segment that holds the same display state; and inserting a high impedance state to the pulses applied to the common electrode and the pulses applied to the segment electrode of the segment that holds the same display state when the pulse potential changes.
Owner:SEIKO EPSON CORP

Method of manufacturing electrophoretic display device

A method of manufacturing an electrophoretic device includes: forming a partition wall on a one substrate with a predetermined pattern; forming an adhesive layer on the partition wall; filling each region as a cell, which has been partitioned by the partition wall, with a display medium, after having formed the adhesive layer; and adhering the other substrate onto the adhesive layer on the partition wall so as to enclose the display medium. The forming of the adhesive layer is performed, with the use of a transfer film with a heat sealing agent formed thereon, by heat-transferring the heat sealing agent. The adhering of the other substrate includes heating the heat sealing agent for again softening the heat sealing agent, which has been transferred as the adhesive layer, so as to obtain an adhesive force.
Owner:DAI NIPPON PRINTING CO LTD

Display device

A display device includes a plurality of gate lines extending in a first direction, a plurality of data lines extending in a second direction, a plurality of sub-gate lines corresponding to the plurality of gate lines and extending in a first direction to be adjacent to a corresponding gate line of the plurality of gate lines, a gate driver configured to drive the plurality of gate lines, a data driver configured to drive the plurality of data lines, and a plurality of pixels arranged in a display area, where an end of each of the plurality of gate lines extends in the first direction from the gate driver is electrically connected to a center portion of a corresponding sub-gate line in the first direction.
Owner:TCL CHINA STAR OPTOELECTRONICS TECH CO LTD

Color filter substrate and display device

ActiveUS7015506B2Minimize unwanted deterioration in display qualityDrop in display qualityOptical filtersSolid-state devicesColor gelDisplay device
A color filter substrate for a display device includes pixels arranged in columns and rows. The substrate includes color filters, each being associated with one of the pixels and including at least two A-color filters in a first color and at least two B-color filters in a second color. Each row is associated with a group of color filters including at least one of the A-color filters and at least one of the B-color filters. Each of the A-color and B-color filters has first and second sides defining a width in the row direction. The area SA of each A-color filter is greater than the area SB of each B-color filter. The first side of each B-color filter has at least one recess, and the first side of each B-color filter has a shape that is defined by forming a recess on the first side of each A-color filter toward the second side thereof in the row direction.
Owner:SHARP KK

Optical element and surface light source device using the same, as well as liquid crystal display

An optical element 11 includes a bandpass filter made of a lamination of thin films respectively having different refraction factors so as to selectively allow light emitted from a backlight 6 to pass therethrough, and a polarizer 3, a quarter-wavelength plate 2 located between the bandpass filter 6 and the polarizer 3 so as to prevent light incident from the side of the polarizer 3 from being reflected by the bandpass filter 1 and then emitted from the side of the polarizer 3.
Owner:NITTO DENKO CORP

Liquid Crystal Display Having Pairs of Power Source Supply Lines and a Method for Forming the Same

A liquid crystal display wherein a first power source supply line and a second power source supply line are respectively applied with a first voltage and a second voltage having a predetermined magnitude, and a first power source supply line and a second power source supply line are disposed as a pair between a first pixel electrode and a second pixel electrode. The first voltage and the second voltage may have different polarities.
Owner:SAMSUNG DISPLAY CO LTD

Liquid crystal display device

The present invention provides a liquid crystal display device with high brightness and high display quality manufactured at low cost without causing the decrease in transmissivity. The liquid crystal display device comprises a gate line GL with a gate electrode GT of thin-film transistor prepared on a first substrate SUB1 and used for applying a scan signal, a gate insulator film GI deposited to cover the gate line, a semiconductor layer nS / S formed in island-like shape on the gate insulator film and to constitute an active layer of the thin-film transistor, a source electrode SD1 and a drain electrode SD2 arranged on the gate insulator film and individually connected to said semiconductor layer, and a pixel electrode PX connected to the drain electrode SD2 wherein the gate line GL and the gate electrode GT, the source electrode SD1, the drain electrode SD2, and the pixel electrode PX are prepared by ink jet coating of a conductive solution in a region enclosed by banks G-BNK, SD-BNK, and P-BNK of the insulator film and by baking. Each of these banks is arranged only in a region where it is concealed by the light shielding film BM on the second substrate SUB2.
Owner:FUTURE VISION

Liquid Crystal Display and Method for Manufacturing Same

A vertically aligned system liquid crystal display in which deterioration in display quality such as graininess, burn-in, afterimages due to disorder in orientation of liquid crystal molecules based on a connection electrodes for interconnecting sub-pixel electrodes can be prevented, and a method for manufacturing such liquid crystal display. In the liquid crystal display, each pixel electrode (2) of a liquid crystal panel is constituted by combining at least two sub-pixel electrodes (2a), and each sub-pixel electrode (2a) is connected through a bridge (3) narrower than the sub-pixel electrode (2a). A vertically aligned system in which liquid crystal molecules tilt symmetrically to the central axis of orientation in the direction perpendicular to the surface of each sub-pixel electrode (2a) upon application of a voltage is employed. The bridge (3) is provided at a position asymmetric to the sub-pixel electrode (2a).
Owner:SHARP KK
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products