Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

1392results about "Measurement of force components" patented technology

Motion analysis system

InactiveUS6301964B1Accurately determine velocity and distance traveledAcceleration measurement using interia forcesGymnastic exercisingAccelerometerTarget Motion Analysis
A device comprised of at least a pair of accelerometers and a tilt sensor mounted in fixed relation to a datum plane defining surface (sole of a shoe) may be used for extracting kinematic variables including linear and rotational acceleration, velocity and position. These variables may be resolved into a selected direction thereby permitting both relative and absolute kinematic quantities to be determined. The acceleration is determined using a small cluster of two mutually perpendicular accelerometers mounted on a shoe. Angular orientation of the foot may be determined by double integration of the foot's angular acceleration (which requires a third accelerometer substantially parallel to one of the two orthogonal accelerometers). The two orthogonal accelerations are then resolved into a net horizontal acceleration or other selected direction which may be integrated to find the foot velocity in the selected direction. The average of the foot velocity corresponds to the subject's gait speed.
Owner:GARMIN

System for detecting and analyzing body motion

A portable sensor system that uses acceleration-insensitive, three-dimensional angle sensors located at various points on the patient's body, and collects data on the frequency and nature of the movements over extended periods of time.
Owner:608442 BC

Method and apparatus for determining the attachment position of a motion sensing apparatus

A motion sensing apparatus generally comprising a housing unit operable to be attached to an object at an attachment position, an accelerometer operable to provide a signal corresponding to an acceleration measurement; and a processing system. The processing system is operable to acquire the signal corresponding to the acceleration measurement and analyze the acquired acceleration measurement to identify the attachment position of the housing unit.
Owner:GARMIN

Systems and methods for monitoring behavior informatics

A system and method used to assess animal behavior includes a module having sensors that collects a variety of physical and biological data from a test subject. Interpretation of the data is provided to assess the test subject's behavior, neurology, biochemistry and physiology. The module is useful in observing the effects of a drug on the test animal and providing information on the drug's signature. Another advantage is the module's portability that allows it to be used in standard laboratory cages. This portability allows the animal to be tested in its own habitat, that can reduce any erroneous data due to stressing the animal when removed to a test cage. Additionally, the module's design allows for parallel data collection and interpretation from several laboratory animals undergoing different experiments. Multi-dimensional modeling of the test subject based the system's interpretation of the data allows pattern recognition of the drug signature, and predictive drug analysis.
Owner:CARNEGIE MELLON UNIV +1

System and method for motion capture and analysis

A system and method for capturing and analyzing motion. According to embodiments of the present invention, the system and method may include defining a standard motion; receiving a first signal from a first sensor, the first signal being representative of a motion under analysis; receiving a second signal from a second sensor, the second signal being representative of the motion under analysis; synchronizing the first signal to the second signal; and comparing the motion under analysis represented by the synchronized first signal and second signal to the standard motion. The system may include video cameras and position sensors and may be include a computer. The computer may be networked.
Owner:MURPHY BRIAN

Device for monitoring and modifying eating behavior

A device for monitoring eating behavior of a user is provided. The device includes at least one sensor mounted on a head of the user, the sensor being capable of detecting jaw muscle movement and sound while not occluding an ear canal of the user.
Owner:IWHISPER

Data input device

The method of entering data into a computer device. A wearable device is attached to a first body part. The device has a lower unit and an upper unit connected to the lower unit. The device has sensors in operative engagement therewith for registering movements. The wearable device has a first accelerometer and a second accelerometer. The lower unit is provided with non-movable parts. A segment of a second body part is moved relative to the device without having physical contact with the sensors. The movement of the segment activates the sensors. The sensors sending sensor signals to a microprocessor unit. The first accelerometer senses an acceleration movement in a first direction. The second accelerometer senses an acceleration movement in a second direction. The first and second accelerometers send acceleration movement signals to a microprocessor unit that stores acceleration movement signals from the accelerometers together with the sensor signals to learn movements of the body part.
Owner:SENSEBOARD TECH

Motion Capture Apparatus and Method

Provided are an apparatus and a method of effectively creating real-time movements of a three dimensional virtual character by use of a small number of sensors. More specifically, the motion capture method, which maps movements of a human body into a skeleton model to generate movements of a three-dimensional (3D) virtual character, includes measuring a distance between a portion of a human body to which a measurement sensor is positioned and a reference position and rotation angles of the portion, and estimating relative rotation angles and position coordinates of each portion of the human body by use of the measured distance and rotation angles.
Owner:SAMSUNG ELECTRONICS CO LTD

Systems and methods for characterizing balance function

InactiveUS20080281550A1Prevent and reduce unwanted side effect of drugReduce subjectivityMedical data miningInertial sensorsComputer science
The present invention relates to systems and methods for characterizing balance function. In particular, the present invention provides systems and methods for monitoring balance function (e.g., in a single individual and / or plurality of individuals), generating one or more databases comprising balance function data, processing and / or analyzing databases comprising balance function data, and characterizing balance function (e.g., in a single individual and / or plurality of individuals (e.g., utilizing databases comprising balance function data)). Systems and methods of the present invention find use in, among other things, research, diagnostic and therapeutic applications.
Owner:WICAB

Force Measurement System Having Inertial Compensation

A force measurement system having inertial compensation includes a force measurement assembly with at least one accelerometer configured to measure the acceleration thereof. According to one aspect of the invention, the force measurement system additionally includes at least one angular velocity sensor configured to measure the angular velocity of the force measurement assembly. According to another aspect of the invention, the force measurement system additionally includes a data processing device with a computer-readable medium loaded thereon that is configured to execute a calibration procedure for determining the inertial parameters of the force measurement assembly by utilizing the measured acceleration of the force measurement assembly while the force measurement assembly is subjected to a plurality of applied linear and / or rotational motion profiles. According to still another aspect of the invention, the at least one accelerometer is disposed on the force transducer.
Owner:BERTEC

Pneumatic automobile tire with integrated sensors and traction control system

A pneumatic vehicle tire includes a carcass, a bead with a bead core arranged in the bead, and a first sensor located within the bead. The first sensor delivers signals which are correlated to frictional forces transmitted by the pneumatic vehicle tire during operation. This sensor has a first end and a second end, wherein the first end includes a heel attached to the bead core and the second end extends radially outward from the bead core within the tire. A plurality of such sensors can be included in each tire, some for measuring longitudinal forces in a circumferential direction of the tire and others for measuring lateral forces in an axial direction of the tire.
Owner:CONTINENTAL AG

Force measurement system having inertial compensation

A force measurement system having inertial compensation includes a force measurement assembly with at least one accelerometer configured to measure the acceleration thereof. According to one aspect of the invention, the force measurement system additionally includes at least one angular velocity sensor configured to measure the angular velocity of the force measurement assembly. According to another aspect of the invention, the force measurement system additionally includes a data processing device with a computer-readable medium loaded thereon that is configured to execute a calibration procedure for determining the inertial parameters of the force measurement assembly by utilizing the measured acceleration of the force measurement assembly while the force measurement assembly is subjected to a plurality of applied linear and / or rotational motion profiles. According to still another aspect of the invention, the at least one accelerometer is disposed on the force transducer.
Owner:BERTEC

Patent application for a computer motional command interface

A method and apparatus are described for interacting with electronic devices through motional commands. The method uses perturbations of the background quasistatic electric fields. The apparatus measures perturbations in electric potential relative to the background. Body movement is recognized by comparing changes in signals over time. Signals collected from sensors are compared with training sets to recognize specified motional commands or gestures. Upon recognizing the commands, the apparatus issues the predetermined response to the motion.
Owner:CEHELNIK THOMAS G

Rotary type component force measuring device

A rotary type component force measuring device capable of finding a highly accurate component force is provided. This measuring device has a rotary type component force detector comprising in integrated manner, a rim mounting frame, a hub mounting frame, a second sensing beam of a character I shaped sectional type which couples and the mounting frames, and a first sensing beam which couples the second sensing beam and the mounting frame, wherein each of front and back surfaces of receiving sensor portions adhere with each of orthogonal shearing type strain gauges A1 to H4, and a signal is derived from the strain gauges A1 to H4 by a bridge circuit for each receiving sensor portion, and the output signals from the bridge circuit are sampled by an electronic circuit disposed on the inside of a rotating unit according to the timing signal from an angle detection signal, and the output signals are transmitted to a signal processing unit disposed on the outside of the rotating unit by non-contact data transmission method, and the output signals are corrected by correction information for every rotation angle position of the detector storing the output signals beforehand, and are subjected to coordinate conversion so as to calculate the six component forces for every angle rotation.
Owner:A&D CO LTD

Method of manufacturing a sensor detecting a physical action as an applied force

A sensor comprises a semiconductor pellet (10) including a working portion (11) adapted to undergo action of a force, a fixed portion (13) fixed on the sensor body, and a flexible portion (13) having flexibility formed therebetween, a working body (20) for transmitting an exterted force to the working portion, and detector means (60-63) for transforming a mechanical deformation produced in the semiconductor pellet to an electric signal to thereby detect a force exerted on the working body as an electric signal. A signal processing circuit is applied to the sensor. This circuit uses analog multipliers (101-109) and analog adders / subtracters (111-113), and has a function to cancel interference produced in different directions. Within the sensor, two portions (E3, E4-E8) located at positions opposite to each other and producing a displacement therebetween by action of a force are determined. By exerting a coulomb force between both the portions, the test of the sensor is carried out. Further, a pedestal (21, 22) is provided around the working body (20). The working body and the pedestal are located with a predetermined gap or spacing therebetween. A displacement of the working body is caused to limitatively fall within a predetermined range corresponding to the spacing. The working body and the pedestal are provided by cutting a same common substrate (350, 350')
Owner:OKADA KAZUHIRO

Multi-force sensing surgical instrument and method of use for robotic surgical systems

A multi-force sensing instrument includes a tool that has a tool shaft having a distal end and a proximal end, a strain sensor arranged at a first position along the tool shaft, at least one of a second strain sensor or a torque-force sensor arranged at a second position along the tool shaft, the second position being more towards the proximal end of the tool shaft than the first position, and a signal processor configured to communicate with the strain sensor and the at least one of the second strain sensor or the torque-force sensor to receive detection signals therefrom. The signal processor is configured to process the signals to determine a magnitude and position of a lateral component of a force applied to the tool shaft when the position of the applied force is between the first and second positions.
Owner:THE JOHN HOPKINS UNIV SCHOOL OF MEDICINE

Force detection device

Forces and moments are detected in a distinguished manner by a simple structure. An outer box-like structure formed of a metal is set on top of an insulating substrate and an insulating inner box-like structure is contained in the interior. Five electrodes E1 to E5 are positioned on a top plate of the inner box-like structure. Four electrodes E6 to E9 are positioned on the four side surfaces of the inner box-like structure. Capacitance elements C1 to C5 are arranged by electrodes E1 to E5 and a top plate of the outer box-like structure and capacitance elements C6 to C9 are arranged by electrodes E6 to E9 and side plates of the outer box-like structure. A force Fx in the X-axis direction is detected by means of the capacitance difference between C6 and C7, a force Fy in the Y-axis direction is detected by means of the capacitance difference between C8 and C9, a force Fz in the Z-axis direction is detected by means of the capacitance of C5, a moment My about the Y-axis is detected by means of the capacitance difference between C1 and C2, and a moment Mx about the X-axis is detected by means of the capacitance difference between C3 and C4.
Owner:WAKO CO LTD

Apparatus and method for refining subject activity classification for recognition of daily activities, and system for recognizing daily activities using the same

Apparatus and method for refining subject activity classification for the recognition of daily activities of a subject, and a system for recognizing daily activities using the same. The refining apparatus improves the correctness of subject activity classification using daily activities of a subject, activation time information of sensors mounted on objects associated with the daily activities of the subject, and the suitability of a continuous activity pattern in relation to the daily activities. This improves the correctness of subject activity classification that becomes basic information in daily activity analysis.
Owner:ELECTRONICS & TELECOMM RES INST
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products