Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

1461 results about "Motion sensing" patented technology

Apparatus for and method of controlling digital image processing apparatus

An apparatus for and method of controlling a digital image processing device in order to reduce power consumption by automatically recognizing a state in which power of a display device can be turned off or the display device can operate in a power saving mode, and in that case, turning off the display device or operating the display device in the power saving mode. The apparatus for controlling a digital image processing device includes: a motion sensing unit sensing a motion of the digital image processing device; and a control unit operating the digital image processing device in a power saving mode when it is determined that the digital image processing device moves.
Owner:SAMSUNG ELECTRONICS CO LTD

Air-writing and motion sensing input for portable devices

The use of motion sensing to perform sophisticated command control and data input into a portable device is disclosed. A motion sensor is embedded or fixedly attached to a portable device to measure movement, motion or tilt of the device in one-, two- or three-dimensions when the portable device is used to air-write or make gestures. The use of full motion information such as rate of change of motion or tilt angle to perform functions and commands is also disclosed. In addition, the use of air-writing to input search criteria and filter schemes for portable devices to manage, search, and sort through various data, files, and information is disclosed.
Owner:MEMSIC

System and method for monitoring driving behavior with feedback

In accordance with an embodiment of the present invention, a network system for monitoring driving behavior comprises one or more vehicle-mountable motion sensing mechanisms that generate a plurality of data relevant to vehicle moving attitude. The data being indicative of manual or mental risks for a vehicle operator is wirelessly transmittable. The network system also comprises a central data processing system that collects the data transmitted from the motion sensing mechanisms. A risk assessment engine operatively coupled to the central data processing system analyzes the collected data to determine the manual or mental risks. The central data processing system further comprises a feedback engine operable to yield indicia based on the analyzed data that is reportable to the vehicle operator or an authorized data recipient. A reward engine operatively coupled to the feedback engine provides incentives to encourage good or improved driving behavior.
Owner:GUPTE ASH

Tracking and Interactive Simulation of Real Sports Equipment

A real-ball interactive sports entertainment and training system combines real-time motion sensing of real world sports equipment to create simulated interactions with amateur or professional sports figures on-screen, optionally including in-game advertising. The interactive sports entertainment and training experience extends to the internet, where users can view their statistics and highlights and compare notes and simulated sports stories with other users, or “cyberjocks.” The system implements methods that include embedding a plurality of three-axis motion sensors within a single piece of user sports equipment, wherein each of the plurality of sensors provides a continuous stream of relative motion data for each axis; disposing the plurality of three-axis motion sensors so that none of the axes are aligned; connecting the disposed motion sensors to a processor, and powering the sensors and the processor so that the processor receives the relative motion data; converting the relative motion data into a six or more axis representation of the motion of the single piece of sports equipment; and communicating the six or more axis representation to a multimedia facility.
Owner:CYBERSPORTS

Motion sensing and processing on mobile devices

Display devices including motion sensing and processing. In one aspect, a handheld electronic device includes a subsystem providing display capability and a set of motion sensors provided on a single substrate and including at least one gyroscope sensing rotational rate of the device around three axes of the device and at least one accelerometer sensing gravity and linear acceleration of the device along these axes. A computation unit is capable of determining motion data from the sensor data stored in the memory, the motion data derived from a combination of the sensed rotational rate around at least one of the axes and the sensed gravity and linear acceleration along at least one of the axes. The motion data describes movement of the device including a rotation of the device around at least one of the axes, the rotation causing interaction with the device.
Owner:INVENSENSE

Interfacing application programs and motion sensors of a device

Interfacing application programs and motion sensors of a device. In one aspect, a high-level command is received from an application program running on a motion sensing device, where the application program implements one of multiple different types of applications available for use on the device. The high-level command requests high-level information derived from the output of motion sensors of the device that include rotational motion sensors and linear motion sensors. The command is translated to cause low-level processing of motion sensor data output by the motion sensors, the low-level processing following requirements of the type of application and determining the high-level information in response to the command. The application program is ignorant of the low-level processing, and the high-level information is provided to the application program.
Owner:INVENSENSE

Motion sensor data processing using various power management modes

Systems and methods for processing motion sensor data using various power management modes of an electronic device are provided. Power may be provided to a motion sensor during a first power mode of the device. In response to the motion sensor detecting a motion event with a magnitude exceeding a threshold, the sensor may transmit a wake up signal to a power management unit of the device. In response to receiving the wake up signal, the power management unit may switch the device to a second power mode. The device may provide power to a processor and load the processor with a motion sensing application when switching to the second power mode. During the second power mode, motion sensor data may be processed to determine that the motion event is not associated with an intentional user input and the device may return to the first power mode.
Owner:APPLE INC

System, method and device for monitoring an athlete

The invention provides a system, method and device which allows for real time monitoring of an athlete's performance during an athletic event, such as a boxing match or kick-boxing match, to provide a greater quantity of information to a viewer of the event. The system (9) includes a plurality of monitoring articles (10) attached to each fighter (202 and 204) and a computing device (50) positioned outside of the fighting environment (200). Each of the plurality of monitoring articles (10) preferably includes a motion sensing device (34), a microprocessor (18) and a wireless transceiver (38). The monitoring article (10) creates a real-time impact force signal for each punch or kick, which is wirelessly transmitted outside of the fighting environment (200) to a computing device (50) for processing into an impact value for transmission to and image on an electro-optical display (250).
Owner:IMPACT SPORTS TECH

Method and system for user interface for interactive devices using a mobile device

A software application and system that enables point-and-click interaction with a TV screen. The application determines geocode positioning information for a handheld device, and uses that data to create a virtual pointer for a television display or interactive device. Some embodiments utilize motion sensing and touchscreen input for gesture recognition interacting with video content or interactive device. Motion sensing can be coupled with positioning or localization techniques the user to calibrate the location of the interactive devices and the user location to establish and maintain virtual pointer connection relationships. The system may utilize wireless network infrastructure and cloud-based calculation and storage of position and orientation values to enable the handheld device in the TV viewing area to replace or surpass the functionality of the traditional TV remote control, and also interface directly with visual feedback on the TV screen.
Owner:REMOTE TELEPOINTER

Motion based payment confirmation

Methods and devices for confirming payment transactions are provided. In one embodiment, an electronic device may include a graphical user interface (GUI) with one or more graphical elements that may be moved by a user to confirm or decline a payment transaction using a selected payment instrument. For example, a user may drag the graphical element to a confirmation position via a touch screen of the electronic device. In another example, a motion sensing device, such as an accelerometer, may sense movement of the electronic device and move the graphical element in response to the motion. Upon confirmation, payment information for the payment transaction may be transmitted to a merchant or payment recipient. Various additional methods, machine-readable media, and devices for confirming payment transactions are provided.
Owner:APPLE INC

Method and apparatus for determining the attachment position of a motion sensing apparatus

A motion sensing apparatus generally comprising a housing unit operable to be attached to an object at an attachment position, an accelerometer operable to provide a signal corresponding to an acceleration measurement; and a processing system. The processing system is operable to acquire the signal corresponding to the acceleration measurement and analyze the acquired acceleration measurement to identify the attachment position of the housing unit.
Owner:GARMIN

Method and apparatus for determining the attachment position of a motion sensing apparatus

A motion sensing apparatus generally comprising a housing unit operable to be attached to an object at an attachment position, an accelerometer operable to provide a signal corresponding to an acceleration measurement; and a processing system. The processing system is operable to acquire the signal corresponding to the acceleration measurement and analyze the acquired acceleration measurement to identify the attachment position of the housing unit.
Owner:GARMIN

Wireless communication device having intelligent alerting system

A wireless device (100) having an optimum alert sequence definition analyzes its environment, including time and type of incoming call, and selects an appropriate alert signal sequence. A central processing unit (114) included within the device (100) is responsive to a transmitted signal from an external communications device to generate active and passive sonic sensing. The reflected signal received through the microphone (110) and a predetermined set of values or ranges stored in a memory (102) coupled to the central processing unit (114) are used as input for a program of instructions tangibly embodied in a programmable storage device executable by the central processing unit (114). Based upon processing of this reflected signal, the central processing unit (114) determines which alert signal is optimum given the environment.The device (100) may further include characterization of the environment based on processing of the ambient noise within the environment and several inputs including: manual inputs (user indication / selection), real time clock (including date), light sensing, temperature sensing, cellular receiver indications (RSSI and local network ID), motion sensing, caller identification, global positioning system data, and radio link reception (i.e. Bluetooth: office / home network, etc.).
Owner:TEXAS INSTR INC

Systems and methods for centering a photograph without viewing a preview of the photograph

Systems and methods are providing for capturing images of objects or faces without previewing the image to be captured. In particular, systems and methods are provided for using a detection algorithm to determine when a camera lens of an electronic device is properly oriented to capture an item (e.g., a face in a self-portrait). The detection algorithm can be configured to identify specific faces or objects, and can direct the electronic device to automatically store a captured image in response to detecting objects or faces of interest. In some embodiments, a motion-sensing component can be used to help align the lens.
Owner:APPLE INC

Generating a three-dimensional model using a portable electronic device recording

Systems and methods are providing for navigating a three-dimensional model using deterministic movement of an electronic device. An electronic device can load and provide an initial display of a three dimensional model (e.g., of an environment or of an object). As the user moves the electronic device, motion sensing components, positioning circuitry, and other components can detect the device movement and adjust the displayed portion of the three-dimensional model to reflect the movement of the device. By walking with the device in the user's real environment, a user can virtually navigate a representation of a three-dimensional environment. In some embodiments, a user can record an object or environment using an electronic device, and tag the recorded images or video with movement information describing the movement of the device during the recording. The recorded information can then be processed with the movement information to generate a three-dimensional model of the recorded environment or object.
Owner:APPLE INC

Method of Controlling a Vehicle or Toy via a Motion-Sensing Device and/or Touch Screen

A method for controlling a remote toy by means of a motion sensing device and / or a touch screen on a mobile device. The mobile device can be a standard mobile phone, tablet, or any other device equipped with either a motion sensing device, touch screen, or both for controlling specific movements on a remote toy.
Owner:RINDLISBACHER STEPHEN M

Force and/or motion measurement system having inertial compensation and method thereof

According to one aspect of the invention, a force measurement system includes a force measurement assembly, a motion base configured to displace the force measurement assembly, and an inertial compensation system configured to determine the inertial forces and / or moments resulting from the displacement of the force measurement assembly by the motion base. According to another aspect of the invention, a method for accurately determining the forces and / or moments applied to a surface of a force measurement device by a subject disposed thereon is disclosed, which includes the step of determining, by using an inertial compensation system, the inertial forces and / or moments resulting from the displacement of a force measurement assembly by a motion base. According to still another aspect of the invention, a force and / or motion measurement system having inertial compensation includes a motion acquisition system having a plurality of motion sensing devices configured to capture a subject's movement.
Owner:BERTEC

Event Detection

A location aware mobile device may include an accelerometer or similar motion sensing component that can measure changes in speed or direction. An application executing in the mobile device can determine whether particular motion changes are indicative of the mobile device being involved in a crash event. If the motion parameters indicate that a crash event has occurred, the mobile device can communicate a crash event notification to a server, which can alert an emergency response unit about the crash, including the crash location, without the need for human intervention. Verification of the crash event may be performed at the server in a variety of ways, including the simultaneous receipt of crash event notifications from multiple co-located devices.
Owner:RODKEY RYAN SCOTT +3

An Intelligent Integrated Sensor Of Tire Pressure Monitoring System (TPMS)

A single integrated sensing chip with multi-functions for tire pressure monitor system (TPMS) comprises: a pressure sensor, an accelerometer, a temperature sensor, and an ASIC (Applied Specific Integrated Circuit) that implements signal conditioning and digitalizes pressure output. The accelerometer incorporated for vehicle motion is used to determine centrifugal acceleration or three-axial acceleration of the rotating wheel, and used for the TPMS sensor wake-up from “power down” mode, or when the velocity of the vehicle is higher than certain speed threshold, which is more robust and lower in cost than the mechanical vibration switch and is naturally integrated with the electronic control unit. The accelerometer can be used for regular motion sensing to monitor the dynamic stability. The integrated sensor system can be packaged into one plastic package first, and then surface mounted to the printed circuit board, or the multi-function single chip can be wafer bonded on the wafer level first and diced into many individual chips, with each chip being directly attached on to the printed circuit board by wire bonding or flip-chip assembly.
Owner:WUHAN FINEMEMS

System for sensing yaw rate using a magnetic field sensor and portable electronic devices using the same

An attitude- and motion-sensing system for an electronic device, such as a cellular telephone, a game device, and the like, is disclosed. The system, which can be integrated into the portable electronic device, includes a two- or three-axis accelerometer and a three-axis magnetic compass. Data about the attitude of the electronic device from the accelerometer and magnetic compass are first processed by a signal processing unit that calculates attitude angles (pitch, roll, and yaw) and rotational angular velocities. These data are then translated into input signals for a specific application program associated with the electronic device.
Owner:MEMSIC

Mobile device and method for touch lock control based on motion sensing

A mobile device and a method control a touch lock function to be set in a locked or unlocked stated by sensing motions of the mobile device. When a motion sensor unit detects any motion of the mobile device and creates a sensing signal corresponding to the motion, a control unit of the mobile device sets a touch lock function to a locked state or an unlocked state, depending on the sensing signal. In the locked state of the touch lock function, the control unit does not perform a particular operation assigned to a touch event even though the touch event is generated on a touch panel in response to a user's touch action.
Owner:SAMSUNG ELECTRONICS CO LTD

Smart golf club multiplayer system for the internet

InactiveUS7789742B1Improve basic golfing skillGymnastic exercisingBall sportsThe InternetSimulation
A system that wirelessly integrates actual golf equipment with a computer and the internet to allow players remotely located from one another to play a competitive simulated game of golf. An individual player may opt to play solo or practice to improve basic golfing techniques. The system includes smart golf clubs, a golf ball receptacle and a golf club motion sensing device, all containing circuits and contact or motion sensors coupled with signal processing and radio frequency transmitter circuitry, thereby wirelessly communicate game performance information to a remote receiver-computer. The computer displays player information and visually simulates and controls a golf game between two players, via the internet, having similar equipment and remotely located from each other. Standard golf clubs may be retrofitted with the sensors and associated circuitry to convert such clubs into “smart clubs” for use with the system. The system employs specially developed computer software to process player performance data, control game play, communicate game information between players, generate and control visual simulations and display player performance information.
Owner:WILLIAMS PHILIP A +1

Wearable human motion applicator

InactiveUS7056297B2Quick and sufficient amount of displacementQuick and sufficient amountInput/output for user-computer interactionElectrotherapyHuman bodyMotion sensing
An improved human motion applicator assures a quick and sufficient amount of displacement given to a part of a human body. The applicator includes a support adapted to be fitted on the part of the human body. The support carries at least one electro-active elastic actuator in a force-transmitting relation to the human part. The actuator includes a dielectric core and a pair of electrodes on opposite of the core for receiving a driving DC voltage thereacross. The elastic actuator has a length and elastically deforms in the lengthwise direction to exert a stretching force to the human part to a greater extent as the driving DC voltage increase. The applicator also includes a controller which applies the driving DC voltage of varying levels to the elastic actuator, thereby generating a varying motion-inducing force to be applied to the part of the human body.
Owner:MATSUSHITA ELECTRIC WORKS LTD

Orientation and motion sensing in athletic training systems, physical rehabilitation and evaluation systems, and hand-held devices

Improved apparatus and methods of sensing or monitoring body orientation and motion and measuring range of motion (ROM) for use in athletic training and physical rehabilitation and evaluation. The apparatus includes a 3-axis sensor, at least one memory, and at least one processor, and is attachable to an object to be monitored. The 3-axis sensor senses a magnitude of tilt along each of a first, second, and third axis, the memory stores data representing the sensed magnitudes of tilt, and the processor processes the data stored in the memory. In one embodiment, the processor determines an angle between each of the first, second, and third axes and a horizontal plane, and selects the two axes corresponding to the two smallest angles between the three axes and the horizontal plane. The processor then generates an indication of the orientation of the object based upon the sensed magnitudes of tilt along the two selected axes.
Owner:NOKIA TECH LTD

Motion based payment confirmation

Methods and devices for confirming payment transactions are provided. In one embodiment, an electronic device may include a graphical user interface (GUI) with one or more graphical elements that may be moved by a user to confirm or decline a payment transaction using a selected payment instrument. For example, a user may drag the graphical element to a confirmation position via a touch screen of the electronic device. In another example, a motion sensing device, such as an accelerometer, may sense movement of the electronic device and move the graphical element in response to the motion. Upon confirmation, payment information for the payment transaction may be transmitted to a merchant or payment recipient. Various additional methods, machine-readable media, and devices for confirming payment transactions are provided.
Owner:APPLE INC

Methods and systems for motion-based management of an enhanced logistics container

Motion-based management of a logistics container uses elements of a wireless node network including a container node associated with the logistics container and equipped with a motion sensor. The motion sensor detects a motion status (e.g., moving, stationary, accelerating, decelerating) for the logistics container. The container node compares the motion status to a prior motion status, and then identifies a changed motion condition for the logistics container based upon the comparison. In response to the changed motion condition, the container node alters a broadcast profile used by the container node in communicating with other nodes in the wireless node network. The container node may be deployed as an apparatus within a logistics container, be considered together with the logistics container as a motion sensing container node apparatus, and be considered with multiple package ID nodes as a motion-based management system for the logistics container.
Owner:FEDEX SERVICES

Simulation of writing on game consoles through the use of motion-sensing technology

A method and system of utilizing a game console with motion sensing technology is provided. The present invention, in various implementations, provides for a method for generating one or more symbols in response to one or more gestures using an input device of a gaming system. The method comprises providing the input device being capable of generating one or more gesture signals in response to one or more gestures and being operable to select a mode of one or more operational states. The method also provides for generating one or more gesture signals corresponding to the one or more gestures, respectively; mapping the one or more generated gesture signals in relation to one or more symbols, respectively; and, transmitting the one or more symbols corresponding to the respective one or more gesture signals to an output.
Owner:ACTIVISION PUBLISHING

Signaling light with motion-sensing light control circuit

A signaling light, such as a wand light or flashlight, includes a motion sensor coupled to a controller for lamp intensity. When the light is moved in a first direction, the lamp is powered at a baseline intensity. When the light is moved in a second direction generally opposite the first direction, the lamp is switched off or dimmed. When swung in a back-and-forth motion, the light as controlled by the controller thereby appears to move in only one direction, thereby providing a signal indicating a direction of motion.
Owner:SHUSTER GARY S
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products