Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

205 results about "Ambient noise level" patented technology

In atmospheric sounding and noise pollution, ambient noise level (sometimes called background noise level, reference sound level, or room noise level) is the background sound pressure level at a given location, normally specified as a reference level to study a new intrusive sound source.

Low-noise optical probes for reducing ambient noise

InactiveUS7483730B2Minimize light pipingReduce optical decouplingEvaluation of blood vesselsTransmissivity measurementsLow noiseCompressible material
An optical probe, which is particularly suited to reduce noise in measurements taken on an easily compressible material, such as a finger, a toe, a forehead, an earlobe, or a lip, measures characteristics of the material. A neonatal and adult disposable embodiment of the probe include adhesive coated surfaces to securely affix the probe onto the patient. In addition, the surface of the probe is specially constructed to reduce the effect of ambient noise.
Owner:JPMORGAN CHASE BANK NA

Pedestrian Alert System And Method

A pedestrian warning or alert system and method are disclosed. The warning system is mounted on an electric vehicle. The warning system includes a front speaker system, a rear speaker system, a front pedestrian detector, a rear pedestrian detector, and an electronic control unit (ECU) electronically coupled to the front speaker system, the rear speaker system, the front pedestrian detector, and the rear pedestrian detector. The ECU commands the front speaker system to emit a warning sound based on the front pedestrian detector detecting a pedestrian-shaped object and commands the rear speaker system to emit a warning sound based on the rear pedestrian detector detecting a pedestrian-shaped object. The ECU is coupled to a microphone, the signal of which is used to estimate an ambient noise level. The intensity and frequency of the warning sound commanded from the front and / or rear speaker system is based on the ambient noise level.
Owner:FORD GLOBAL TECH LLC

Ambient noise based augmentation of media playback

Ambient noise sampled by a mobile device from a local environment is used to automatically trigger actions associated with content currently playing on the mobile device. In some implementations, subtitles or closed captions associated with the currently playing content are automatically invoked and displayed on a user interface based on a level of ambient noise. In some implementations, audio associated with the currently playing content is adjusted or muted. Actions can be automatically triggered based on a comparison of the sampled ambient noise, or an audio fingerprint of the sampled ambient noise, with reference data, such as a reference volume level or a reference audio fingerprint. In some implementations, a reference volume level can be learned on the mobile device based on ambient noise samples.
Owner:APPLE INC

Networked sound masking system

A sound masking system for shaping the ambient noise level in a physical environment. The sound masking system comprises a networked and distributed system having a number of master units coupled together and to a control unit. One or more of the master units may include satellite sound masking units which function to reproduce the sound masking signal generated by the master sound masking unit. Each of the master units is addressable over the network by the control unit enabling the control unit to program the contour, spectral band, and gain characteristics of the sound masking output signal. The system may also include a remote control unit which provides the capability to tune and adjust each master sound masking unit in situ without requiring physical access through the ceiling installation.
Owner:777388 ONTARIO

Enhancing audio using a mobile device

Embodiments disclosed herein enable detection and improvement of the quality of the audio signal using a mobile device by determining the loss in the audio signal and enhancing audio by streaming the remainder portion of audio. Embodiments disclosed herein enable an improvement in the sound quality rendered by rendering devices by emitting an test audio signal from the source device, measuring the test audio signal using microphones, detecting variation in the frequency response, loudness and timing characteristics using impulse responses and correcting for them. Embodiments disclosed herein also compensate for the noise in the acoustic space by determining the reverberation and ambient noise levels and their frequency characteristics and changing the digital filters and volumes of the source signal to compensate for the varying noise levels.
Owner:CAAVO INC

Adaptive filter for speech enhancement in a noisy environment

A cabin communication system for improving clarity of a voice spoken within an interior cabin having ambient noise includes a microphone for receiving the spoken voice and the ambient noise and for converting the spoken voice and the ambient noise into an audio signal, the audio signal having a first component corresponding to the spoken voice and a second component corresponding to the ambient noise, a speech enhancement filter for removing the second component from the audio signal to provide a filtered audio signal, the speech enhancement filter removing the second component by processing the audio signal by a method taking into account elements of psycho-acoustics of a human ear, and a loudspeaker for outputting a clarified voice in response to the filtered audio signal.
Owner:LEAR CORP

Remote control systems with ambient noise sensor

A remote control system includes a remote control transmitter that transmit a signal and a receiver than can receive the signal from the transmitter. A control device performs a function having a first and a second option. The control device responds to the signal received by the receiver and performs the first option if the distance between the remote control transmitter and the receiver is greater than a particular distance and performs a function based on the ambient noise level.
Owner:WATHEN DOUGLAS L

Adaptive notification of an incoming call in a mobile phone

A device and method for handling announcement of an incoming call in a telephone handset at least in part in accordance with a measured ambient noise level is provided. In some embodiments, the disclosed device includes an audio signaling mechanism such as a ringer whose loudness is automatically adjusted in accordance with a measured ambient noise levels. Alternatively or additionally, the present invention provides an audio speaker for outputting received voice communications, wherein the loudness of the speaker is determined at least in part in accordance with a measured ambient noise level. In some embodiments, the present invention provides methods and devices for handling announcement of an incoming call at least in part in accordance with electrical output from other sensing circuits such as location sensing circuits and environmental circuits. In some embodiments, a loudness of the audio speaker for outputting received voice communications is determined at least in part in accordance with electrical output from other sensing circuits such as location sensing circuits and environmental circuits.
Owner:SUN DAVID

Method and apparatus for automatic volume control in an audio system

An audio system (100) is provided with improved adaptive filter (206) to automatically adjust signal gain depending on the ambient noise level. The original music signal passes through a normalized adaptive filter (206), and is subtracted from the ambient room signal detected by a microphone (120), resulting in an error signal that is an estimate of the ambient noise. The error signal is used to update a set of adaptation coefficients so that the normalized adaptive filter more accurately simulates the room transfer function, resulting in an better estimate of the ambient noise. The audio system (100) is calibrated automatically upon initial use to determine adaptation coefficients and noise threshold level to prevent runaway gain. System parameters are adjusted using a controller (124) with a user-friendly interface (400).
Owner:MACKIE DESIGNS

Active noise reduction method using perceptual masking

A method of active noise reduction is described which comprises receiving an audio signal (132) to be played, receiving a noise signal (105, 107, 116, 118, 126), indicative of ambient noise (111), from at least one microphone (104, 106), and generating a noise cancellation signal (114) depending on both, said audio signal (132) and said noise signal (105, 107, 116, 118, 126).
Owner:NXP BV

Personal noise reduction method for enclosed cabins

InactiveUS20150003621A1Reducing and eliminating ambient noiseReduce environmental noiseMicrophonesEar treatmentEnvironmental noiseNegative phase
A Personal Noise Reduction for enclosed cabins is disclosed. According to one embodiment, an input audio source corresponding to sound received from multiple microphones situated equidistantly in both directions in a two dimensional plane, is converted to a digital signal via an analog to digital (A / D) convertor. The AID converted audio is analyzed for content to identify ambient noise. The frequency, amplitude and phase of the identified ambient noise is subsequently determined. A Noise correction sound wave is generated with negative phase of that corresponding to the identified ambient noise. The noise correction sound wave is added to the identified noise to create a noise corrected sound.
Owner:MAX SOUND CORP

Headset with fit detection system

Headphones with acoustically resistant ear cups, an external noise sensor mounted thereto that monitors ambient noise, and internal sensors to monitor noise within each ear cup are disclosed. A processing system monitors the external and interior sound detected by the sensors and compares the level inside the ear cups with the detected level of ambient noise. It activates a transducer such as a vibrator, buzzer, or light as needed to indicate when the level within the ear cups has exceeded the predetermined criteria thereby indicating improper fit of the headphones. Alternative embodiments include wirelessly communicating the collected data to an auxiliary computer for remote data collection, storage and monitoring. The headphones may also provide a sound dosimeter; bandpass filtering; automatic noise reduction with feed forward and / or feed back; wireless voice and data communication; and a voice activated switch, all using elements of the headphone fit detection circuitry.
Owner:SONETICS HLDG

Ambient noise isolation audio headphones having a layered dampening structure

An audio headphone apparatus having ambient noise isolation properties for musicians and sound engineers which allows a user to substantially attenuate ambient noise levels and focus on the electronic audio presented to the headphones. The apparatus utilizes a unique layering of absorber materials with unique geometric shapes which in combination highly attenuate external ambient acoustic energy and control undesirable “boomy” bass response. The apparatus further utilizes a desiccant material within the ear cuff cover which helps to absorb perspiration or other moisture.
Owner:DIRECT SOUND LLC

Ambient noise-based adaptation of secondary path adaptive response in noise-canceling personal audio devices

An adaptive noise canceller adapts a secondary path modeling response using ambient noise, rather than using another noise source or source audio as a training source. Anti-noise generated from a reference microphone signal using a first adaptive filter is used as the training signal for training the secondary path response. Ambient noise at the error microphone is removed from an error microphone signal, so that only anti-noise remains. A primary path modeling adaptive filter is used to modify the reference microphone signal to generate a source of ambient noise that is correlated with the ambient noise present at the error microphone, which is then subtracted from the error microphone signal to generate the error signal. The primary path modeling adaptive filter is previously adapted by minimizing components of the error microphone signal appearing in an output of the primary path adaptive filter while the anti-noise signal is muted.
Owner:CIRRUS LOGIC INC

Directional wireless communication systems

A wireless communication system based on a directional speaker is disclosed. The system can include an interface unit and a base unit. The audio signals from the speaker can be generated by transforming ultrasonic signals in air. This allows the production of directional audio signals even when the aperture of the speaker has dimensions in the order of a few centimeters. The audio signals from the speaker can be heard hands-free. Further, privacy protection is enhanced. In one embodiment, the interface unit can be attached or integrated to a piece of clothing at the shoulder of the user, with the audio signals from the speaker directed towards one of the user's ears. The wireless communication system can be applied to a number of different areas, including a communication device, such as a cell phone; a hearing aid; an entertainment system; and a computation system, such as a personal digital assistant or a computer. The wireless communication system can be personalized to the hearing characteristics of the user, or to the ambient noise level of the environment.
Owner:IPVENTURE

System and method for receiving telemetry data from an implantable medical device

A system and method for receiving telemetry data from implantable medical devices such as cardiac pacemakers with improved noise immunity is disclosed. Ambient noise levels and signal strength are monitored and used to adaptively adjust the detection sensitivity of the receiver. Filtering of the received signal is performed to remove both broadband and narrowband noise. Removal of narrowband noise is accomplished with notch filters that are dynamically adjusted in accordance with a detected noise spectrum.
Owner:CARDIAC PACEMAKERS INC

Ambient noise level sampling system for cooling an electronic device

An electronic device is provided that is able to detect noise to which the electronic device is exposed and an internal temperature of the device. The device contains a cooling unit to cool at least a portion of the electronic device and a subsystem coupled to the microphone and / or a thermal sensor and further coupled to the cooling unit. The cooling unit adjusts according to the detected noise and internal temperature. A method for cooling an electronic device is also provided. The method comprises monitoring the noise of the device's ambient environment, monitoring an internal temperature of the device, and actuating a user interface. The method provides for cooling the device by adjusting fan speed, clock speed, or power supply voltage applied to the device based on the noise of the ambient environment, an internal temperature of the device, and actuation of the user interface.
Owner:ZEBRA TECH CORP

Method and device for localizing sound sources placed within a sound environment comprising ambient noise

A method for localizing one or more sound sources of interest placed within a sound environment comprising ambient noise by estimating the directions of arrival (θ,φ) of said one or more sound source of interest comprising the steps of: calculating the environment steered response power (SRP (t, f, θ, φ)) corresponding to the steered response power of said one or more source of interest for one or more orientations using said environment audio signals; obtaining, using said array of at least two microphones, noise audio signals corresponding to the audio signals emanating from said sound environment under particular reference conditions; calculating a noise steered response power (SRPn (t, f, θ, φ)) corresponding to the steered response power of the ambient noise for said one or more orientations using said noise audio signals; and estimating the direction of arrival of said sound source of interest.
Owner:CANON KK

Hearing aid having second order directional response

A hearing aid apparatus is disclosed that employs both an omnidirectional microphone and at least one directional microphone of at least the first order. The electrical signals output from the directional microphone are supplied to an equalization amplifier which at least partially equalizes the amplitude of the low frequency electrical signal components of the electrical signal with the amplitude of the mid and high frequency electrical signal components of the electrical signals of the directional microphone. A switching circuit accepts the signals output from both the omnidirectional microphone and the directional microphone. The switching circuit connects the signal from the omnidirectional microphone to an input of a hearing aid amplifier when the switching circuit is in a first switching state, and connects the output of the equalization circuit to the hearing aid amplifier input when the switching circuit is in a second switching state. The switching circuit may be automatically switched in response to sensed ambient noise levels.
Owner:ETYMOTIC RES

Dynamic volume adjustment in a slot machine

A casino gaming machine includes a speaker structured to produce a game audio output having a volume, an ambient noise level (ambient noise level) detector structured to detect an ambient noise level proximate the gaming machine, and an dynamic volume controller configured to regulate the volume of the game audio output in relation to a detected ambient noise level. The gaming machine can produce a plurality of game audio outputs, wherein the game audio output volumes can be differentially adjusted in relation to a detected ambient noise level. Differential volume adjustment can be on the basis of a parameter, such as sound output class.
Owner:IGT

Authentication frequency and challenge type based on environmental and physiological properties

An apparatus and method are disclosed for determining authentication frequency (i.e., the length of time between authenticating and re-authenticating a user) and challenge type (e.g., username / password, fingerprint recognition, voice recognition, etc.) based on one or more environmental properties (e.g., ambient noise level, ambient luminosity, temperature, etc.), or one or more physiological properties of a user (e.g., heart rate, blood pressure, etc.), or both. Advantageously, the illustrative embodiment enables authentication frequency and challenge type to be adjusted based on the likelihood of malicious activity, as inferred from these properties. In addition, the illustrative embodiment enables the authentication challenge type to be tailored to particular environmental conditions (e.g., noisy environments, dark environments, etc.).
Owner:AVAYA INC

Apparatus and method for deciding adaptive noise level for bandwidth extension

An apparatus and method for deciding an adaptive noise level for bandwidth extension are provided. The apparatus includes a noise level decider for deciding a high-band noise level for bandwidth extension according to tonality of an input signal, a pitch frequency analyzer for detecting a pitch frequency of the input signal and analyzing correlation between the detected pitch frequency and a frequency channel, and a noise level controller for adaptively controlling the decided high-band noise level based on the analyzed correlation of the pitch frequency and the frequency channel.
Owner:ELECTRONICS & TELECOMM RES INST

Audio enhancement system

An audio enhancement system for compensating for ambient noise in a listening environment, comprises an audio system that produces an electrical sound signal and generates a sound output from the electrical sound signal. A sensor (e.g., a microphone) senses a total sound signal representative of the total sound level in the listening environment, including the sound output from the audio system and the ambient noise within the listening environment. A processing unit responsive to the total sound signal and the electrical sound signal extracts from the total sound signal an ambient noise signal representative of the ambient noise in the listening environment. A controller responsive to the ambient noise signal performs a linear predictive coding (LPC) analysis and generates a control signal, which is input to an equalizer to adjust the sound output of the audio system in order to compensate for the ambient noise level.
Owner:HARMAN BECKER AUTOMOTIVE SYST

Directional wireless communication systems

A wireless communication system based on a directional speaker is disclosed. The system can include an interface unit and a base unit. The audio signals from the speaker can be generated by transforming ultrasonic signals in air. This allows the production of directional audio signals even when the aperture of the speaker has dimensions in the order of a few centimeters. The audio signals from the speaker can be heard hands-free. Further, privacy protection is enhanced. In one embodiment, the interface unit can be attached or integrated to a piece of clothing at the shoulder of the user, with the audio signals from the speaker directed towards one of the user's ears. The wireless communication system can be applied to a number of different areas, including a communication device, such as a cell phone; a hearing aid; an entertainment system; and a computation system, such as a personal digital assistant or a computer. The wireless communication system can be personalized to the hearing characteristics of the user, or to the ambient noise level of the environment.
Owner:IPVENTURE

Method for self-testing notification appliances in alarm systems

A method for self-testing notification appliances in an alarm system, including the steps of measuring ambient noise at a notification appliance, comparing the measured ambient noise to a threshold ambient noise level, and performing a self-test of the notification appliance if the measured ambient noise does not exceed the threshold ambient noise level. The method may further include the step of recording a fail result for the notification appliance if the measured ambient noise exceeds the threshold ambient noise level. Performing the self-test of the notification appliance may include the steps of activating a notification feature of the notification appliance, measuring output of the notification feature, comparing the measured output to a predefined value, recording a pass result for the notification appliance if the measured output exceeds the predefined value, and recording a fail result for the notification appliance if the measured output does not exceed the predefined value.
Owner:JOHNSON CONTROLS TYCO IP HLDG LLP

Speaker volume control for voice communication device

A system and method for adjusting the volume level of a communications device in response to ambient noise. In one embodiment, ambient noise is sampled once and the volume of a speaker associated with the communications device is increased to, and maintained at, a level sufficient to overcome the ambient noise such that a user can easily carry on a conversation or hear what is being transmitted. In another embodiment, ambient noise is periodically sampled and the volume of the speaker is adjusted in response to the sampled ambient noise. The system and method provides enhanced user convenience and power saving advantages.
Owner:BELLSOUTH INTPROP COR

Pedestrian alert system and method

A pedestrian warning or alert system and method are disclosed. The warning system is mounted on an electric vehicle. The warning system includes a front speaker system, a rear speaker system, a front pedestrian detector, a rear pedestrian detector, and an electronic control unit (ECU) electronically coupled to the front speaker system, the rear speaker system, the front pedestrian detector, and the rear pedestrian detector. The ECU commands the front speaker system to emit a warning sound based on the front pedestrian detector detecting a pedestrian-shaped object and commands the rear speaker system to emit a warning sound based on the rear pedestrian detector detecting a pedestrian-shaped object. The ECU is coupled to a microphone, the signal of which is used to estimate an ambient noise level. The intensity and frequency of the warning sound commanded from the front and / or rear speaker system is based on the ambient noise level.
Owner:FORD GLOBAL TECH LLC
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products