Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

144 results about "In-band signaling" patented technology

In telecommunications, in-band signaling is the sending of control information within the same band or channel used for data such as voice or video. This is in contrast to out-of-band signaling which is sent over a different channel, or even over a separate network. In-band signals may often be heard by telephony participants, while out-of-band signals are inaccessible to the user.

In-band QoS signaling refernce model for QoS-driven wireless lans

A station, such as a point coordinator (PC) or a non-PC station, in a basic service set (BSS) in a wireless local area network (WLAN) is disclosed. The station includes a frame classification entity (FCE), a frame scheduling entity (FSE) and a QoS management entity (QME). The FCE is logically located in a logical link control (LLC) layer of the station and has a classification table containing at least one classifier entry. Each classifier entry contains a virtual stream identifier (VSID) and a frame classifier associated with a user session. The FCE receives a data frame associated with the user session, which can be one of a voice session, a video session, a data session and a multimedia session. The data frame contains in-band quality of service (QoS) signaling information for the user session. The FCE classifies the received data frame to a selected VSID contained in a classifier entry in the classification table based on a match between an in-band frame classification information contained in the received frame and the frame classifier contained in the classifier entry. The FSE is logically located in a medium access control (MAC) sublayer of the station and has a frame scheduling table containing at least one entry. Each entry in the frame scheduling table contains a VSID and a QoS parameter set associated with a user session identified by the VSID. The FSE is responsive to the classified data frame by scheduling a transmission opportunity (TO) for the classified data frame based on the at least one QoS parameter value associated with the VSID and characterizing the user session. The QME interfaces with the FCE and The FSE.
Owner:AMERICAN TELEPHONE & TELEGRAPH CO

Efficient in-band signaling for discontinuous transmission and configuration changes in adaptive multi-rate communications systems

Techniques for discontinuous transmission (DTX) and fast in-band signaling of configuration changes and protocol messages in speech communications systems provide cost efficiency in terms of radio transmission capacity, in terms of fixed line transmission, and in terms of implementation effort. An exemplary method for performing discontinuous transmission (DTX) in a communications system in which source data is interleaved for transmission from a first component in the system to a second component in the system includes the steps of detecting periods of source data inactivity, and transmitting silence descriptor (SID) frames from the first to the second component during the periods of source data inactivity, certain of the transmitted SID frames being interleaved using a different interleaving algorithm as compared to that used for source data. For example, the source data can be block diagonally interleaved, and certain of the SID frames can be block interleaved. An exemplary method for effecting configuration changes in a communications system includes the step of transmitting an escape frame in place of a speech data frame, the escape frame including a gross bit pattern to distinguish the escape frame from speech data frames and conveying a configuration change indication. The escape frame can further include a data field to indicate a particular configuration change to be made. For example, where the communications system is an AMR system, an escape frame can be used to change an active codec mode set. Alternatively, an escape frame can be used to change a phase of codec information.
Owner:TELEFON AB LM ERICSSON (PUBL)

Digital video guard

This invention relates to the veracity of information that is displayed to a user of a computer and can also relate to the veracity of information provided to a computer by human input devices such as pointing devices and keyboards. A digital video guard device is a peripheral that is retrofitted to commodity computer device. The digital video guard device provides trust in specific information presented on a digital display. The digital video guard device resides in-line with a digital display and enables secure end-to-end interactions between a user and a displayed (usually remote) application. In-band signalling within the digital video stream is used to carry encrypted information from a remote source, over untrusted network infrastructure through the digital video guard device to a user for viewing. The creation of encrypted digital video content can be achieved by either local or remote applications, and is effected by manipulating what is to be rendered on a computer's display, i.e. encrypting data that will at some time form part of a digital display stream and be output from an information device to a digital display. The digital video guard device can decrypt and verify the integrity of the digital video content as it is sent to a digital display. The integrity of the displayed information is indicated by a trusted LED on the digital video guard device hardware. Part or the entire video signal may be designated as trusted, depending on what data within the video signal has been encrypted, signed, or otherwise labelled as being trustworthy.
Owner:COMMONWEALTH OF AUSTRALIA
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products