Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

3790results about "Automatic clutches" patented technology

Overrunning coupling assembly

An overrunning coupling assembly includes a notch plate and an annular coupling pocket plate positioned in face-to-face relationship with respect to each other along a common axis. The pocket plate has strut pockets disposed at angularly spaced positions about the common axis. The notch plate has notch recesses at angularly spaced positions about the common axis and positioned in juxtaposed relationship with respect to the strut pockets. Torque-transmitting struts are positioned in each of the strut pockets. Each strut has first and second ears at one edge thereof for enabling pivotal motion of the struts about an ear axis intersecting the ears. The opposite edge of each strut is movable between disengaged and engaged positions with respect to one of the notch recesses whereby one-way torque transfer may occur between the plates. A lubricant flows between the notch plate and pocket plate. A spring is positioned in each strut pocket and biases the respective strut toward the notch plate. Each spring engages the respective strut intermediate the ear axis and the opposite edge. Each strut pocket provides sufficient clearance forward of the respective opposite edge of the strut to allow forward sliding movement of the respective strut during overrunning to cause the engagement of the respective spring and strut to occur nearer the ear axis, thereby reducing the length of a moment arm about which the spring acts upon the strut which enables frictional forces of the flowing lubricant to hold the strut in its disengaged position to prevent the strut from slapping against the notch recesses as the notch plate and pocket plate are respectively counterrotated.
Owner:MEANS IND INC

Multiple-clutch device

The invention is directed to a multiple-clutch device, such as a double-clutch device, for arranging in a drivetrain of a motor vehicle between a drive unit and a transmission, wherein the clutch device has a first clutch arrangement associated with a first transmission input shaft of the transmission and a second clutch arrangement associated with a second transmission input shaft of the transmission for transmitting torque between the drive unit and the transmission. According to one aspect of the invention, it is suggested that plates in a plate stack of a clutch arrangement constructed as a plate clutch arrangement which have at least one friction facing can be brought into frictional engagement with plates having no friction facing, wherein at least one of the plates not having a friction facing is thicker in axial direction than friction facing carrying elements of adjacent plates having at least one friction facing. Alternatively or in addition, it is suggested that at least one plate which has at least one friction facing of sintered material and at least one plate which has at least one friction facing made of another friction facing material are provided in the plate stack, wherein the other friction facing material has a progressive frictional coefficient curve (dlambd / dDELTAN) in relation to a slip speed (DELTAN).
Owner:ZF FRIEDRICHSHAFEN AG +1

Overrunning coupling assembly

InactiveUS6116394AReduce wearEliminate lubrication control requirementRotary clutchesFriction clutchesCouplingTrunnion
An overrunning coupling assembly includes a notch plate and an annular coupling pocket plate positioned in face-to-face relationship with respect to each other along a common axis. The pocket plate includes strut pockets disposed at angularly spaced positions about the axis. The notch plate includes notch recesses at angularly spaced positions about the common axis and positioned in juxtaposed relationship with respect to the strut pockets. The notch plate includes an inner circumferential rail at a radially inward side of the notch recesses and an outer circumferential rail at a radially outward side of the notch recesses. Torque-transmitting struts are positioned in the strut pockets. Each strut has first and second ears at one edge thereof for enabling pivotal motion of the struts about an ear axis intersecting the ears. The opposite edge of each strut is engageable with one of the notch recesses whereby one-way torque transfer may occur between the plates. Each opposite edge has first and second corners. Each strut pocket is sufficiently enlarged to allow pivotal movement of each strut about a strut axis which is parallel with the common axis, thereby enabling one of the first and second corners to be selectively supported by one of the inner and outer circumferential rails to prevent the struts from slapping against the notch recesses as the notch plate and pocket plate are respectively counterrotated.
Owner:MEANS IND INC

Bi-directional overrunning clutch

A bi-directional overrunning clutch is disclosed for controlling torque transmission between a secondary drive shaft and secondary driven shafts. The overrunning clutch includes a pinion input shaft in a differential housing that engages with a clutch housing rotatably disposed within the differential housing. At least one race is located adjacent to the clutch housing and is engaged with an output shaft. A cage is located between the race and the clutch housing. The cage is movable with respect to the clutch housing. A <DEL-S DATE="20030304" ID="DEL-S-00001"/>first<DEL-E ID="DEL-S-00001"/> coil is mounted within the differential housing adjacent to the cage and is adapted to produce an electromagnetic field when energized which causes the cage to drag with respect to the clutch housing. The dragging of the cage with respect to the clutch housing positions <INS-S DATE="20030304" ID="INS-S-00001"/>rolls within <INS-E ID="INS-S-00001"/>the cage to engage the clutch housing with the race when wheels on a primary drive shaft lose traction. <DEL-S DATE="20030304" ID="DEL-S-00002"/>A<DEL-E ID="DEL-S-00002"/> <INS-S DATE="20030304" ID="INS-S-00002"/>If desired a <INS-E ID="INS-S-00002"/>second coil <DEL-S DATE="20030304" ID="DEL-S-00003"/>is<DEL-E ID="DEL-S-00003"/> <INS-S DATE="20030304" ID="INS-S-00003"/>may be <INS-E ID="INS-S-00003"/>mounted within the differential housing adjacent <DEL-S DATE="20030304" ID="DEL-S-00004"/>adjacent<DEL-E ID="DEL-S-00004"/> to the cage. The second coil is adapted to produce an electromagnetic field when energized which advances cage with respect to the clutch housing causing the clutch housing to engage with the races. When the second coil is activated, the output shaft drives the pinion input shaft producing engine braking. An electronic control system is utilized to control the energizing of the coils.
Owner:HILLIARD

Motor having an integrated torque sensor

A motor unit comprises a housing for containing a motor, a motor shaft for receiving a motor provided driving force, a torque sensor mechanism for detecting torque, and a controller for controlling power to the motor in response to a detected amount of torque. An actuator couples the torque sensor to a sensor of the controller. The actuator is configured to move relative to the controller sensor thereby causing the sensor to produce a signal indicative of the detected level of torque. The controller is contained within the housing of the motor. The motor unit may also have an auxiliary shaft for receiving an externally provided driving force with a first torque transmission path for transferring the externally provided driving force to a drive mechanism and a second torque transmission path for transferring the motor provided driving force to said drive mechanism. A first one way drive means is provided in the first torque transmission path between the auxiliary shaft and the drive mechanism such that when the drive mechanism is being driven by the motor provided driving force through the second torque transmission path, the auxiliary shaft is able to freewheel. The motor unit can drive any apparatus, but may be used in a pedal driven apparatus such as a bicycle where an externally provided driving force is provided by manually operable pedals of said apparatus which are fixed for rotation with the auxiliary shaft. In this case, the auxiliary shaft comprises a pedal spindle of the bicycle and the drive mechanism comprises a sprocket or belt drive.
Owner:FOSTER ASSETS CORPORATION
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products