Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

301results about "Multiplex code application" patented technology

Novel signature sequences and methods for time-frequency selective channel

A signature sequence employed in a wireless transmission over a channel is detected and utilized. The signature sequence is selected from a set of sequences formed by delay-Doppler shifts of a base sequence. Preferably but not exclusively, the set of sequences is formed by circular delay-Doppler shifts of the base sequence. The base sequence can be, for example, an m-sequence. A received signal is obtained from a received wireless transmission. A candidate sequence selector (90) selects a candidate sequence from among a set of sequences for evaluation as the signature sequence, the set of sequences having been formed by sequence set generator (88) as delay-Doppler shifts of a base sequence. An image former (82) uses the base sequence and the received signal to form a delay-Doppler image with respect to an image area pertinent to the candidate sequence. A metric analyzer (84) computes a metric over the image area pertinent to the candidate sequence and uses the metric to determine if the signature sequence is the candidate sequence. A sequence utilization device (76) can use the signature sequence to identify another transceiver unit which sent the wireless transmission, and / or use the signature sequence for synchronization with another transceiver unit which sent the wireless transmission.
Owner:TELEFON AB LM ERICSSON (PUBL)

Qualifying available reverse link coding rates from access channel power setting

Data rate allocation decisions are made for a communications channel, such as a wireless reverse link connection. A first parameter used in this determination is a path loss, which is determined by the following process. First, a message is sent from a first station to a second station, such as on a paging channel. The message indicates a forward Effective Radiated Power (ERP) of a pilot signal transmitted by the first station. The second station then determines the received signal strength of this pilot signal, taking into account receiver gains. The path loss can then be estimated by the second station as the difference between the forward ERP data value that it received and the detected received pilot power. The second station also then preferably determines a transmit power level when transmitting a message back to the first station. This transmit power level information is encoded as a digital data word together with the forward path loss information as calculated by the first station. Upon receipt of these two pieces of information by the first station, the forward path loss estimate as calculated by the second station, and the output power value of the second station, the first station can then determine the amount of excess power available at the field unit. This excess power difference is indicative of the amount of dynamic range available in the transmit power amplifier in the particular second station. With this information, the first station can then make a determination as to whether coding rates which require a higher dynamic range will be acceptable for use by the particular second station.
Owner:IPR LICENSING INC
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products