Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

35results about How to "Satisfactory display quality" patented technology

Display apparatus and tiled display apparatus

A display apparatus includes a display panel, a display panel driver and a first connection wire. The display panel includes a substrate and a display layer disposed on a first surface of the substrate. The display panel driver applies a driving signal to the display panel. The display panel driver is disposed on a second surface opposite to the first surface of the substrate. The first connection wire is disposed at a first side surface connecting the first and second surfaces of the substrate. The first connection wire connects electrically the display panel with the display panel driver.
Owner:SAMSUNG DISPLAY CO LTD

Active device array substrate

An active device array substrate includes a substrate, first scan lines, second scan lines, data lines, and pixels. The first and the second scan lines are alternately arranged along a first direction. The data lines are arranged in parallel along a second direction. The pixels are arranged to form first pixel rows and second pixel rows alternately arranged in the first direction. The first pixel row includes first and second pixels electrically connected to the first scan lines, the second scan lines, and the data line, respectively. The second pixel row includes third and fourth pixels electrically connected to the first scan lines, the second scan lines, and the data line, respectively. The pixels between two adjacent data lines are arranged in two columns. Among the pixels in the same column, the pixels in odd rows and in even rows are electrically connected to different data lines, respectively.
Owner:AU OPTRONICS CORP

Display device

A display device includes a flexible display panel, a roller for winding the flexible display panel, an elastic holder fixed to an edge of the flexible display panel and having a side parallel to the edge of the flexible display panel, and a tension applier set disposed at opposite ends of the elastic holder for tensioning the elastic holder.
Owner:SAMSUNG DISPLAY CO LTD

Touch panel substrate having transparent conductive film

A transparent touch panel substrate comprising a transparent substrate and deposited thereon a transparent conductive metal oxide film which contains zinc, indium, and tin as metallic elements and is soluble in acids. The transparent conductive metal oxide film preferably contains zinc in an amount of from 40 to 65 atomic % based on all metals and contains indium in an amount of from 0.25 to 1.3 times the amount of tin on an atomic basis. The film preferably has a thickness of from 100 to 160 nm. Unlike the conventional substrate for resistive film type transparent touch panels which comprises a glass plate coated with a transparent conductive ITO film, the touch panel substrate of the invention combines three properties: high light transmittance; ease of processing in forming a transparent electrode by acid etching; and the transparent conductive film has a moderate sheet resistance of from 500 to 5,000 OMEGA. It therefore realizes a touch panel which combines the three functions of having satisfactory display quality, being of the power-saving type, and enabling touch switch operations to be conducted without fail.
Owner:NIPPON SHEET GLASS CO LTD

Organic electroluminescent device, polarizing surface light source, and liquid-crystal display

An organic electroluminescent device containing an organic electroluminescent element (2) and a polarized-light scattering film (1) which comprises a light-transmitting resin (11) and dispersedly contained therein minute regions (12) differing from the light-transmitting resin in birefringent characteristics and in which the difference in refractive index between the minute regions and the light-transmitting resin in the axis direction in which a linearly polarized light has a maximum transmittance, Δn1, is smaller than 0.03 and that in a direction perpendicular to the Δn1 direction, Δn2, is from 0.03 to 0.5, the light produced by the organic electroluminescent element being emitted from the device through the polarized-light scattering film. Also disclosed are a polarizing surface light source which comprises the organic electroluminescent device and a liquid-crystal display which comprises the polarizing surface light source and a liquid-crystal cell disposed on the light emission side of the light source.
Owner:NITTO DENKO CORP

Display device and method for driving same

An embodiment of the present invention realizes a display device equipped with a self light-emitting type display element driven by a current, by using a pixel circuit having a configuration simpler than a conventional configuration. A pixel circuit includes a driving transistor (T1), an input transistor (T2), a capacitor (Cst), and three organic EL elements (OLED(R), OLED(G), and OLED(B)). Cathode terminals of the organic EL elements (OLED(R), OLED(G), and OLED(B)) are respectively connected to low-level power supply lines (ELVSS(R), ELVSS(G), and ELVSS(B)). In such a configuration, in each sub-frame, only a low-level power supply voltage (ELVSS) corresponding to the sub-frame is set to a relatively low level, and the other low-level power supply voltages (ELVSS) are set to relatively high levels.
Owner:SHARP KK

Pixel structure

A pixel structure includes a scan line, a data line, an active device, a first electrode layer, a second electrode layer, and an insulation layer. The active device is electrically connected to the scan line and the data line. The first electrode layer is electrically connected to the active device. The second electrode layer is electrically insulated from the first electrode layer. The insulation layer is located between the first electrode layer and the second electrode layer, and the first electrode layer or the second electrode layer includes an enclosed-frame-shaped portion, first V-shaped branch portions, and second V-shaped branch portions. The first V-shaped branch portions and the second V-shaped branch portions are arranged within the enclosed-frame-shaped portion in opposite directions, and end terminals of the first V-shaped branch portions and end terminals of the second V-shaped branch portions are connected to the enclosed-frame-shaped portion.
Owner:AU OPTRONICS CORP

Organic electroluminescence device

An organic electroluminescence device includes an organic electroluminescence element having a function layer interposed between a first electrode and a second electrode. The function layer includes at least an organic light emission layer. The electroluminescence device includes: partition walls which define concave portions and each of formation areas of the organic electroluminescence element within each of the concave portions to arrange the function layer within the concave portion; and auxiliary electrodes which are each arranged continuously on the partition wall and within the concave portion. The second electrode is formed in an area where both the formation area of the organic electroluminescence element and a non-formation area of the organic electroluminescence element overlap with each other, so as to be electrically connected to the function layer and the auxiliary electrode and is formed continuously between the function layer arranged within the concave portion and the auxiliary electrode in a state where the second electrode contacts with the function layer arranged within the concave portion and the auxiliary electrode. The auxiliary electrode is formed to be thicker than the second electrode.
Owner:ELEMENT CAPITAL COMMERCIAL CO PTE LTD

Active device array substrate

An active device array substrate includes a substrate, first scan lines, second scan lines, data lines, and pixels. The first and the second scan lines are alternately arranged along a first direction. The data lines are arranged in parallel along a second direction. The pixels are arranged to form first pixel rows and second pixel rows alternately arranged in the first direction. The first pixel row includes first and second pixels electrically connected to the first scan lines, the second scan lines, and the data line, respectively. The second pixel row includes third and fourth pixels electrically connected to the first scan lines, the second scan lines, and the data line, respectively. The pixels between two adjacent data lines are arranged in two columns. Among the pixels in the same column, the pixels in odd rows and in even rows are electrically connected to different data lines, respectively.
Owner:AU OPTRONICS CORP

Cellulose ester film, retardation film, polarizing plate and liquid crystal display device

Provided is a cellulose ester film including a polycondensed ester which is obtained from a mixture containing an aromatic dicarboxylic acid, an aliphatic dicarboxylic acid, an aliphatic diol having an average carbon atom number of from 2.0 to 3.0 and a monocarboxylic acid, and both terminals of which are a monocarboxylic acid ester derivative.
Owner:FUJIFILM CORP

Display panel

A display panel includes an active device array substrate, an opposite substrate, and a liquid crystal layer. The active device array substrate includes a substrate and further includes a pixel array, signal lines, and first and second repairing lines all disposed on the substrate. The signal lines electrically connect the pixel array. The first repairing line includes first and second line segments respectively located on first and second sides of the pixel array. The first side is substantially perpendicular to the second side. The first and second line segments are electrically connected. The second repairing line includes third and fourth line segments respectively located on third and second sides of the pixel array. The third side is substantially parallel to the first side. The fourth and third line segments are electrically connected. The opposite substrate above the active device array substrate does not cover the first and third line segments.
Owner:AU OPTRONICS CORP

Pixel structure and liquid crystal display panel having the same

A pixel structure and a liquid crystal display (LCD) panel having the same are provided. The pixel structure includes a data line, a scan line, at least one active device, a pixel electrode, and a metal line. The active device is electrically connected to the data line and the scan line. The pixel electrode is electrically connected to the active device and has an opening at the edge of the pixel electrode adjacent to at least one of the data line and the scan line. The metal line is located below the pixel electrode. Besides, a portion of the metal line extending to the edge of the pixel electrode is exposed by the opening. The shortest distance between an edge of the opening of the pixel electrode and the metal line is greater than or substantially equal to 3 μm.
Owner:OPTRONIC SCI LLC

Reflector and liquid crystal display module with the reflector

A reflector capable of preventing stain caused from the interference among the beams of light, for reflecting light incident on an LCD module to utilize the light as a light source for display. The reflector includes a plurality of projecting and recessing patterns which are irregularly disposed on the reflector, and each projecting and recessing pattern is disposed corresponding to prescribed polygon shape as a grid, and is repeated in the plane direction of the reflector so that the length of the edge or the distribution of distance between the centers of each projecting and recessing pattern conforms to the Gaussian distribution. The reflector also includes a unit area constituted of the plurality of polygon shapes, so that one edge of the unit area is integral multiple of a unit pixel and substantially 1900 μm or more, and smaller than or equal to the entire screen of the LCD module.
Owner:NEC LCD TECH CORP

Pixel array and head up display

A pixel array that includes a plurality of repeat unit sets is provided. Each of the repeat unit sets includes a first scan line, a second scan line, a first data line, a second data line, a third data line, a fourth data line, at least two first color sub-pixels, at least two second color sub-pixels, at least two third color sub-pixels, and a fourth color sub-pixel. Each of the first color sub-pixels, the second color sub-pixels, and the third color sub-pixels has a first short side length and a first long side length. The fourth color sub-pixel has a second short side length and a second long side length, and the second long side length is greater than the first long side length.
Owner:AU OPTRONICS CORP

Multi-domain vertical alignment display panel and color filter substrate

A color filter substrate including a base, a patterned color filter film layer, a common electrode layer and shelters is provided. The patterned color filter film layer is disposed on the base. Here, the patterned color filter film layer has recesses. Additionally, the patterned color filter film layer and the base are covered by the common electrode layer conforming to surfaces of the recesses. Moreover, the recesses and the common electrode layer are covered by the shelters.
Owner:CHUNGHWA PICTURE TUBES LTD

Prism sheet and a backlight module adopting the same

A prism sheet (42) includes a lower surface (422), an upper surface (424) opposite to the lower surface, and a refractive-diffractive hybrid lens array (426) formed on the upper surface. The refractive-diffractive hybrid lens array has a plurality of refractive-diffractive hybrid lenses (428). The refractive-diffractive hybrid lenses can reduce or even avoid chromatic aberration along axes thereof. This can converge light beams, thereby enhancing uniformity of the light beams. Thus, the prism sheet can provide satisfactory display quality. Furthermore, the refractive-diffractive hybrid lens array and the body of the prism sheet are in-mold by means of injection molding. This ensures relatively little process in the production line. Therefore, the prism sheet can be advantageously applied in backlight modules (5) of liquid crystal display devices.
Owner:HON HAI PRECISION IND CO LTD

Display device and method for driving same

An embodiment of the present invention realizes a display device equipped with a self light-emitting type display element driven by a current, by using a pixel circuit having a configuration simpler than a conventional configuration. A pixel circuit includes a driving transistor (T1), an input transistor (T2), a capacitor (Cst), and three organic EL elements (OLED(R), OLED(G), and OLED(B)). Cathode terminals of the organic EL elements (OLED(R), OLED(G), and OLED(B)) are respectively connected to low-level power supply lines (ELVSS(R), ELVSS(G), and ELVSS(B)). In such a configuration, in each sub-frame, only a low-level power supply voltage (ELVSS) corresponding to the sub-frame is set to a relatively low level, and the other low-level power supply voltages (ELVSS) are set to relatively high levels.
Owner:SHARP KK

Display device and method for operating the display device

A display device includes a display panel configured to receive a first-frame image signal for displaying a first-frame image in a first frame. The display panel is further configured to receive a second-frame image signal for displaying a second-frame image in a second frame that immediately follows the first frame such that the display panel appears to display a transition region associated with a boudary between a portion of the first-frame image and a portion of the second-frame image and moving in a moving direction. The display device further includes an optical effect layer and electrode sets. The electrode sets respectively overlap different portions of the optical effect layer and are configured for sequentially starting affecting the different portions of the optical effect layer such that the optical effect layer appears to display a light-blocking section that moves in the moving direction and overlaps the transition region.
Owner:SAMSUNG DISPLAY CO LTD

Display apparatus and tiled display apparatus

A display apparatus includes a display panel, a display panel driver and a first connection wire. The display panel includes a substrate and a display layer disposed on a first surface of the substrate. The display panel driver applies a driving signal to the display panel. The display panel driver is disposed on a second surface opposite to the first surface of the substrate. The first connection wire is disposed at a first side surface connecting the first and second surfaces of the substrate. The first connection wire connects electrically the display panel with the display panel driver.
Owner:SAMSUNG DISPLAY CO LTD

Display panel

ActiveUS8670102B2Ensure the display quality after repairInhibitionNon-linear opticsEngineeringLine segment
A display panel includes an active device array substrate, an opposite substrate, and a liquid crystal layer. The active device array substrate includes a substrate and further includes a pixel array, signal lines, and first and second repairing lines all disposed on the substrate. The signal lines electrically connect the pixel array. The first repairing line includes first and second line segments respectively located on first and second sides of the pixel array. The first side is substantially perpendicular to the second side. The first and second line segments are electrically connected. The second repairing line includes third and fourth line segments respectively located on third and second sides of the pixel array. The third side is substantially parallel to the first side. The fourth and third line segments are electrically connected. The opposite substrate above the active device array substrate does not cover the first and third line segments.
Owner:AU OPTRONICS CORP

Pixel structure

A pixel structure includes a scan line, a data line, an active device, a first electrode layer, a second electrode layer, and an insulation layer. The active device is electrically connected to the scan line and the data line. The first electrode layer is electrically connected to the active device. The second electrode layer is electrically insulated from the first electrode layer. The insulation layer is located between the first electrode layer and the second electrode layer, and the first electrode layer or the second electrode layer includes an enclosed-frame-shaped portion, first V-shaped branch portions, and second V-shaped branch portions. The first V-shaped branch portions and the second V-shaped branch portions are arranged within the enclosed-frame-shaped portion in opposite directions, and end terminals of the first V-shaped branch portions and end terminals of the second V-shaped branch portions are connected to the enclosed-frame-shaped portion.
Owner:AU OPTRONICS CORP

Planar light source device and liquid crystal display apparatus

A liquid crystal display apparatus includes a liquid crystal display panel including a display region in which a plurality of pixels are arrayed, and a planar light source device which illuminates the liquid crystal display panel from behind it. The planar light source includes cold cathode fluorescent tubes, a back surface cover, which is substantially rectangular and stores the cold cathode fluorescent tubes, and an upper surface cover attached to the back surface cover. The back surface cover has at least two extended portions, each having a main body portion extending from a side of the back surface cover and a lug portion protruding from the main body portion. The upper surface cover has supporting portions, each supporting at least the lug portion of each extended portion.
Owner:TOSHIBA MATSUSHITA DISPLAY TECH

Organic electroluminescence device capable of preventing light from being not emitted

An organic electroluminescence device includes an organic electroluminescence element having a function layer interposed between a first electrode and a second electrode. The function layer includes at least an organic light emission layer. The electroluminescence device includes: partition walls which define concave portions and each of formation areas of the organic electroluminescence element within each of the concave portions to arrange the function layer within the concave portion; and auxiliary electrodes which are each arranged continuously on the partition wall and within the concave portion. The second electrode is formed in an area where both the formation area of the organic electroluminescence element and a non-formation area of the organic electroluminescence element overlap with each other, so as to be electrically connected to the function layer and the auxiliary electrode and is formed continuously between the function layer arranged within the concave portion and the auxiliary electrode in a state where the second electrode contacts with the function layer arranged within the concave portion and the auxiliary electrode. The auxiliary electrode is formed to be thicker than the second electrode.
Owner:ELEMENT CAPITAL COMMERCIAL CO PTE LTD

Display apparatus

A display apparatus includes a first transistor, a first pixel electrode, a second transistor, and a second pixel electrode. The first transistor includes a first drain electrode. The first pixel electrode is positioned between an edge of the display apparatus and a center of the display apparatus and includes a first recessed structure. The first recessed structure directly contacts the first drain electrode. The second transistor includes a second drain electrode. The second pixel electrode is positioned between the edge of the display apparatus and the first pixel electrode and includes at least one recessed structure. The at least one recessed structure includes a second recessed structure. The second recessed structure directly contacts the second drain electrode. A total maximum width of the at least one recessed structure is greater than a maximum width of the first recessed structure.
Owner:SAMSUNG DISPLAY CO LTD
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products