Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

266 results about "Transmission schedule" patented technology

Transmission Schedule. Each beacon transmits once on each band once every three minutes, 24 hours a day. A transmission consists of the callsign of the beacon sent at 22 words per minute followed by four one-second dashes.

Method of modulating the transmission frequency in a real time opinion research network

A computer-implemented transmission scheme is provided to control client-server interchanges within a distributed communications network, such as a real time opinion research system. Interchanges include transmitting media streams between one or more clients to a server over a computer network, including the global Internet. A polling management unit sets and manages the transmission mode that includes event-driven and periodic interchanges. Periodic interchanges can be simultaneously or staggeredly transmitted to a sampling pool of active clients. A transmission mode unit implements the transmission scheme set by the polling management unit. A parameter selector establishes the transmission interval and transmission period which are used to trigger each communication interchange. A client assignor creates one or more sampling classes from the sampling pool by applying a sampling quotient that is generated by the parameter selector. A schedule editor produces a transmission schedule for the active clients. If more than one sampling class has been created, each sampling class would receive a separate transmission schedule for providing staggered transmissions at designated transmission intervals. The transmission schedule can include other data preparation and formatting instructions for compression, aggregation and packetization.
Owner:ZARBANA DIGITAL FUND

Method and apparatus for prioritized information delivery with network coding over time-varying network topologies

A method and apparatus is disclosed herein for information delivery with network coding over time-varying network topologies. In one embodiment, the method comprises decomposing a sequence of topology graphs that model a time-varying network topology into a plurality of virtual graphs, where each virtual graph of the plurality of virtual graphs corresponds to a distinct traffic class, and the virtual topology graph representing a partial topology of a time-varying network. The method also includes selecting a network code for each virtual graph in the plurality of the virtual graphs to meet requirements of the distinct traffic class corresponding to said each topology graph, where the network code is used to encode packets of the associated traffic class, and processing packets of each traffic class using the network code determined by its corresponding virtual topology and the requirements of said each traffic class, including using a virtual buffer system to implement the network code corresponding to each traffic class over the physical network topology. The method also includes using a scheduler to determine the transmission schedules for each output packet from the virtual buffer system of each traffic class where the scheduling decisions are based, at least in part, on the QoS requirements of each class.
Owner:NTT DOCOMO INC

Method and apparatus for prioritized information delivery with network coding over time-varying network topologies

A method and apparatus is disclosed herein for information delivery with network coding over time-varying network topologies. In one embodiment, the method comprises decomposing a sequence of topology graphs that model a time-varying network topology into a plurality of virtual graphs, where each virtual graph of the plurality of virtual graphs corresponds to a distinct traffic class, and the virtual topology graph representing a partial topology of a time-varying network. The method also includes selecting a network code for each virtual graph in the plurality of the virtual graphs to meet requirements of the distinct traffic class corresponding to said each topology graph, where the network code is used to encode packets of the associated traffic class, and processing packets of each traffic class using the network code determined by its corresponding virtual topology and the requirements of said each traffic class, including using a virtual buffer system to implement the network code corresponding to each traffic class over the physical network topology. The method also includes using a scheduler to determine the transmission schedules for each output packet from the virtual buffer system of each traffic class where the scheduling decisions are based, at least in part, on the QoS requirements of each class.
Owner:NTT DOCOMO INC
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products