Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

1271results about "Microphone structural association" patented technology

Silicon condenser microphone and manufacturing method

A silicon condenser microphone package is disclosed. The silicon condenser microphone package comprises a transducer unit, substrate, and a cover. The substrate includes an upper surface having a recess formed therein. The transducer unit is attached to the upper surface of the substrate and overlaps at least a portion of the recess wherein a back volume of the transducer unit is formed between the transducer unit and the substrate. The cover is placed over the transducer unit and includes an aperture.
Owner:KNOWLES ELECTRONICS INC

Assembly of a capacitive acoustic transducer of the microelectromechanical type and package thereof

A microelectromechanical-acoustic-transducer assembly has: a first die integrating a MEMS sensing structure having a membrane, which has a first surface in fluid communication with a front chamber and a second surface, opposite to the first surface, in fluid communication with a back chamber of the microelectromechanical acoustic transducer, is able to undergo deformation as a function of incident acoustic-pressure waves, and faces a rigid electrode so as to form a variable-capacitance capacitor; a second die, integrating an electronic reading circuit operatively coupled to the MEMS sensing structure and supplying an electrical output signal as a function of the capacitive variation; and a package, housing the first die and the second die and having a base substrate with external electrical contacts. The first and second dice are stacked in the package and directly connected together mechanically and electrically; the package delimits at least one of the front and back chambers.
Owner:STMICROELECTRONICS SRL

Substrate-level assembly for an integrated device, manufacturing process thereof and related integrated device

A substrate-level assembly having a device substrate of semiconductor material with a top face and housing a first integrated device, including a buried cavity formed within the device substrate, and with a membrane suspended over the buried cavity in the proximity of the top face. A capping substrate is coupled to the device substrate above the top face so as to cover the first integrated device in such a manner that a first empty space is provided above the membrane. Electrical-contact elements electrically connect the integrated device with the outside of the substrate-level assembly. In one embodiment, the device substrate integrates at least a further integrated device provided with a respective membrane, and a further empty space, fluidically isolated from the first empty space, is provided over the respective membrane of the further integrated device.
Owner:STMICROELECTRONICS SRL

Telephony Device with Improved Noise Suppression

The present invention relates to a telephony device comprising a near-mouth microphone (M1) for picking up an input acoustic signal including the speaker's voice signal (S1) and an unwanted noise signal (N1,D1), a far-mouth microphone (M2) for picking up an unwanted noise signal (N2,D2) in addition to the near-end speaker's voice signal (S2), said speaker's voice signal being at a lower level than the near-mouth microphone, and an orientation sensor for measuring an orientation indication of said mobile device. The telephony device further comprises an audio processing unit comprising an adaptive beamformer (BF) coupled to the near-mouth and far-mouth microphones, including spatial filters for spatially filtering the input signals (z1,z2) delivered by the two microphones, and a spectral post-processor (SPP) for post-processing the signal delivered by the beam-former so as to separate the desired voice signal from the unwanted noise signal so as to deliver the output signal (y).
Owner:KONINKLIJKE PHILIPS ELECTRONICS NV

Integrated microphone

A method of forming a microphone having a variable capacitance first deposits high temperature deposition material on a die. The high temperature material ultimately forms structure that contributes to the variable capacitance. The method then forms circuitry on the die after depositing the deposition material. The circuitry is configured to detect the variable capacitance.
Owner:INVENSENSE

MEMS microphone

A MEMS microphone includes a cover, a housing engaging with the cover for forming a cavity, at least one transducer accommodated in the cavity, and a conductive case covering the cover and the sidewall of the housing. The housing includes a cover and a sidewall extending from the base. The conductive case defines a first part covering the cover, a second part extending from the first part for covering the sidewall and a third part perpendicularly extending from the second part for covering a periphery part of the base, the third part forming an opening.
Owner:AAC ACOUSTIC TECH (SHENZHEN) CO LTD +1

Silicon condenser microphone and manufacturing method

A silicon condenser microphone package is disclosed. The silicon condenser microphone package comprises a transducer unit substrate, and a cover. The substrate includes an upper surface having a recess formed therein. The transducer unit is attached to the upper surface of the substrate and overlaps at least a portion of the recess wherein a back volume of the transducer unit is formed between the transducer unit and the substrate. The cover is placed over the transducer unit and includes an aperture.
Owner:KNOWLES ELECTRONICS INC

Electret assembly for a microphone having a backplate with improved charge stability

The present invention relates to a microphone that includes a housing and a diaphragm and backplate located with the housing. The housing has a sound port for receiving the sound. The diaphragm undergoes movement relative to the backplate, which it opposes, in response to the incoming sound. The backplate has a charged layer with a first surface that is exposed to the diaphragm and a second surface opposite the first surface. The backplate further includes a conductor for transmitting a signal from the backplate to electronics in the housing. The conductor faces the second surface of the charged layer. To minimize the charge degradation created by contact with or infiltration of foreign materials, the first surface, the second surface, or both surfaces of the charged layer includes a protective layer thereon.
Owner:SONION NEDERLAND

Microphone Assembly With Barrier To Prevent Contaminant Infiltration

A microphone assembly includes a cover, a base coupled to the cover, a microelectromechanical system (MEMS) device disposed on the base. An opening is formed in the base and the MEMS device is disposed over the opening. The base includes a barrier that extends across the opening and is porous to sound. The remaining portions of the base do not extend across the opening.
Owner:KNOWLES ELECTRONICS INC

Semiconductor device

A semiconductor device includes a substrate, a semiconductor chip having a diaphragm, which vibrates in response to sound pressure variations, and a circuit chip that is electrically connected to the semiconductor chip so as to control the semiconductor chip, wherein the semiconductor chip is fixed to the surface of the circuit chip whose backside is mounted on the surface of the substrate. Herein, a plurality of connection terminals formed on the backside of the semiconductor chip are electrically connected to a plurality of electrodes running through the circuit chip. A ring-shaped resin sheet is inserted between the semiconductor chip and the circuit chip. The semiconductor chip and the circuit chip vertically joined together are stored in a shield case having a mount member (e.g., a stage) and a cover member, wherein connection terminals of the circuit chip are exposed to the exterior via through holes of the stage.
Owner:YAMAHA CORP

Sensor activation of wireless microphone

A wireless microphone attached to a ruggedized, mobile digital video recording system may be used to record audio of events when activated. To conserve file space in a storage device, a sensor may be used to activate the microphone for audio recording, and to cause video recording to begin at the same moment through a pairing mechanism between the wireless microphone and the mobile digital video recording system. This sensor activation provides a complete audio / visual record of the event, or series of events, that caused the sensor to trigger. The microphone may also be manually triggered, thus providing a user with a means to capture audio / visual records in an ad hoc fashion. All recorded events are saved to files in a high-capacity storage device for later retrieval and review.
Owner:INTEGRIAN ACQUISITION CORP

Cylindrical microphone having an electret assembly in the end cover

A microphone includes a separate end cover with a sound port. A diaphragm is directly attached to the end cover. The backplate is positioned within the housing against a ridge near an end of the housing. A spacer is positioned against the backplate. The diaphragm engages the spacer when the end cover, with its attached diaphragm, is installed in the housing. The backplate of the microphone has an integral connecting wire that is made of the same material as the backplate. The integral connecting wire may have an inherent spring force to provide a pressure contact with the accompanying electrical components. The integral connecting wire electrically couples the backplate to the electronic components within the housing and transmits the raw audio signal corresponding to movement of the diaphragm. The housing may have first and second ridges on which the printed circuit board and the electret assembly are mounted, respectively.
Owner:SONION NEDERLAND

Electret assembly for a microphone having a backplate with improved charge stability

The present invention relates to a microphone that includes a housing and a diaphragm and backplate located with the housing. The housing has a sound port for receiving the sound. The diaphragm undergoes movement relative to the backplate, which it opposes, in response to the incoming sound. The backplate has a charged layer with a first surface that is exposed to the diaphragm and a second surface opposite the first surface. The backplate further includes a conductor for transmitting a signal from the backplate to electronics in the housing. The conductor faces the second surface of the charged layer. To minimize the charge degradation created by contact with or infiltration of foreign materials, the first surface, the second surface, or both surfaces of the charged layer includes a protective layer thereon.
Owner:SONION NEDERLAND

Microphone

A miniaturized microphone maintaining the properties of a microphone chip and achieving a smaller mounting area. The microphone includes a package which includes a first and second member. At least one of the first second members includes a recess. The microphone also includes a circuit element installed on an inner surface of the first member. Additionally, the microphone includes a microphone chip arranged on a surface on an opposite side of an installing surface of the circuit element.
Owner:MMI SEMICON CO LTD

Microphone device and manufacturing method thereof

The present invention provides a microphone device with good frequency characteristics. The microphone device can pick up sound faithfully. In detail there is provided a microphone device comprising a microphone element, a signal processor, and a cover disposed over the microphone element and the signal processor, the cover including a mesh structure occupying 25% or more of at least one surface of the cover.
Owner:PANASONIC CORP

Microphone assembly

A microphone assembly includes a cover, a substrate, at least one wall disposed and between and attached to the cover and the substrate, an acoustic transducer acoustically sealed to the lid, and an interposer. The interposer and the acoustic transducer are electrically connected without using the lid as an electrical conduit. The transducer and interposer are disposed one above the other and the transducer is supported by the interposer or by a pedestal.
Owner:KNOWLES ELECTRONICS INC

Silicon Condenser Microphone and Manufacturing Method

A silicon condenser microphone package is disclosed. The silicon condenser microphone package comprises a transducer unit, substrate, and a cover. The substrate includes an upper surface having a recess formed therein. The transducer unit is attached to the upper surface of the substrate and overlaps at least a portion of the recess wherein a back volume of the transducer unit is formed between the transducer unit and the substrate. The cover is placed over the transducer unit and includes an aperture.
Owner:KNOWLES ELECTRONICS INC

Package structure and packaging method of MEMS microphone

A package structure of a micro-electromechanical system (MEMS) type microphone is disclosed. The MEMS microphone comprises a substrate, a MEMS chip, an acoustic wave cover, and an encapsulant. The substrate has connection pads. The MEMS chip is electrically coupled to the connection pads. The MEMS chip includes an acoustic wave sensing portion. The acoustic wave cover is fixed on the MEMS chip for covering without contacting the acoustic wave sensing portion and defining an acoustic wave cavity space. The acoustic wave cover has an opening for allowing an acoustic wave to enter or exit out of the acoustic cavity space. The encapsulant encapsulates the substrate, the MEMS chip, and the acoustic wave cover, wherein a surface of the acoustic wave cover is exposed. The exposed surface of the acoustic wave cover is along the same level as the surface of the encapsulant.
Owner:IND TECH RES INST

Assembly of a capacitive acoustic transducer of the microelectromechanical type and package thereof

A microelectromechanical-acoustic-transducer assembly has: a first die integrating a MEMS sensing structure having a membrane, which has a first surface in fluid communication with a front chamber and a second surface, opposite to the first surface, in fluid communication with a back chamber of the microelectromechanical acoustic transducer, is able to undergo deformation as a function of incident acoustic-pressure waves, and faces a rigid electrode so as to form a variable-capacitance capacitor; a second die, integrating an electronic reading circuit operatively coupled to the MEMS sensing structure and supplying an electrical output signal as a function of the capacitive variation; and a package, housing the first die and the second die and having a base substrate with external electrical contacts. The first and second dice are stacked in the package and directly connected together mechanically and electrically; the package delimits at least one of the front and back chambers.
Owner:STMICROELECTRONICS SRL

Reduced Footprint Microphone System with Spacer Member Having Through-Hole

A microphone system has a chip system coupled to a base. Among other things, the chip system includes a microphone chip and a circuit chip, in a stacked relationship, configured to electrically communicate. The microphone chip has a diaphragm configured to move upon receipt of an incident audio signal, while the circuit chip has at least one through hole audibly coupled with the diaphragm of the microphone chip.
Owner:INVENSENSE

Transducer amplification circuit

A transducer amplification circuit may include a preamplifier circuit with a signal input receiving a transducer signal to provide an amplified transducer signal comprising audible frequency components and ultrasonic frequency components. The transducer amplification circuit may include a first sigma-delta modulator configured to sample and quantize the amplified transducer signal to generate a first digital transducer signal comprising a first quantization noise signal. The first sigma-delta modulator may include a first noise transfer function having a high pass response in at least a portion of an audible frequency range to push the quantization noise signal to ultrasonic frequencies. A second sigma-delta modulator is configured to sample and quantize the amplified transducer signal to generate a second digital transducer signal comprising a second quantization noise signal. The second sigma-delta modulator may include a second noise transfer function with a magnitude minimum placed at the ultrasonic frequencies.
Owner:ANALOG DEVICES INT UNLTD

Substrate-level assembly for an integrated device, manufacturing process thereof and related integrated device

A substrate-level assembly having a device substrate of semiconductor material with a top face and housing a first integrated device, including a buried cavity formed within the device substrate, and with a membrane suspended over the buried cavity in the proximity of the top face. A capping substrate is coupled to the device substrate above the top face so as to cover the first integrated device in such a manner that a first empty space is provided above the membrane. Electrical-contact elements electrically connect the integrated device with the outside of the substrate-level assembly. In one embodiment, the device substrate integrates at least a further integrated device provided with a respective membrane, and a further empty space, fluidly isolated from the first empty space, is provided over the respective membrane of the further integrated device.
Owner:STMICROELECTRONICS SRL

Audiovisual Surround Augmented Reality (ASAR)

A system and method to enable realistic augmented reality 2D or 3D audiovisual imagery, integrating virtual object(s) and audio source data in the vicinity of a user / wearer of a head-mounted device (HMD), the HMD integrated with a mobile communication device. The system includes a HMD to facilitate enhancement of the user / wearer's audiovisual capabilities, a mobile communication device integrated with the HMD. The system also includes a dedicated system mounted on the HMD and comprising at least an embedded software solution, at least four (4) miniature speakers mounted on the HMD and configured to optimize the audio provided to the user / wearer and an inertial measurement unit (IMU) mounted on the HMD for processing the data on and through the speakers according to the data imputed to the software instructions, thereby providing realistic sound in the HMD and anchoring of sounds deriving from virtual objects in the real world.
Owner:REALITY PLUS LTD

Microelectromichanical system package with strain relief bridge

A strain absorption bridge for use in a MEMS package includes a first substrate that is configured to be attachable to a circuit board. A first elastically deformable element is coupled to the first substrate and the first elastically deformable element is configured to be attachable to a MEMS device. Alternatively, the MEMS device may be attached to the first substrate. The elastically deformable element at least partially absorbs and dissipates mechanical strain communicated from the circuit board before the mechanical strain can reach the MEMS device.
Owner:KNOWLES ELECTRONICS INC

System and Method for a MEMS Transducer

An embodiment as described herein includes a microelectromechanical system (MEMS) with a first MEMS transducer element, a second MEMS transducer element, and a semiconductor substrate. The first and second MEMS transducer elements are disposed at a top surface of the semiconductor substrate and the semiconductor substrate includes a shared cavity acoustically coupled to the first and second MEMS transducer elements.
Owner:INFINEON TECH AG

Surface-Mounted Microphone Arrays on Flexible Printed Circuit Boards

A microphone array, having a three-dimensional (3D) shape, has a plurality of microphone devices mounted onto (at least one) flexible printed circuit board (PCB), which is bent to achieve the 3D dimensional shape. Output signals from the microphone devices can be combined (e.g., by weighted or unweighted summation or differencing) to form sub-element output signals and / or element output signals, and ultimately a single array output signal for the microphone array. The PCB may be uniformly flexible or may have rigid sections interconnected by flexible portions. Possible 3D shapes include (without limitation) cylinders, spirals, serpentines, and polyhedrons, each formed from a single flexible PCB. Alternatively, the microphone array may be an assembly of multiple, interconnecting sub-arrays, each having two or more rigid portions separated by one or more flexible portions, where each sub-array has at least one cut-out portion for receiving a rigid portion of another sub-array.
Owner:MH ACOUSTICS

MEMS device and method of fabricating the same

A MEMS device includes a chip carrier having an acoustic port extending from a first surface to a second surface of the chip carrier, a MEMS die disposed on the chip carrier to cover the acoustic port at the first surface of the chip carrier, and an enclosure bonded to the chip carrier and encapsulating the MEMS die.
Owner:AKUSTICA

Silicon Condenser Microphone and Manufacturing Method

A silicon condenser microphone package is disclosed. The silicon condenser microphone package comprises a transducer unit substrate, and a cover. The substrate includes an upper surface having a recess formed therein. The transducer unit is attached to the upper surface of the substrate and overlaps at least a portion of the recess wherein a back volume of the transducer unit is formed between the transducer unit and the substrate. The cover is placed over the transducer unit and includes an aperture.
Owner:KNOWLES ELECTRONICS INC

Temperature compensated microphone

A method and a device for eliminating or minimizing the sensitivity changes in a microphone due to temperature changes. The temperature-induced changes in the sensitivity can be caused by the changes in the sound-to-electrical signal transducer, in the microphone membrane, in the ASIC or other reasons. One or more temperature dependent components in the microphone or in a microphone module are used to offset the temperature-induced changes in the sensitivity. Sensitivity of a microphone is defined as the output voltage for a specific acoustic stimulus and load condition.
Owner:WSOU INVESTMENTS LLC
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products