Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

59 results about "Adaptive voltage scaling" patented technology

Adaptive Voltage Scaling (AVS) is a closed-loop dynamic power minimization technique that adjusts the voltage supplied to a computer chip to match the chip's power needs during operation. Many computer chips, especially those in mobile devices or Internet of things devices are constrained by the power available (for example, they are limited to the power stored in a battery) and face varying workloads. In other situations a chip may be constrained by the amount of heat it is allowed to generate. In addition, individual chips can vary in their efficiency due to many factors, including minor differences in manufacturing conditions. AVS allows the voltage supplied to the chip, and therefore its power consumption, to be continuously adjusted to be appropriate to the workload and the parameters of the specific chip. This is accomplished by integrating a device that monitors the performance of the chip (a hardware performance manager) into the chip, which then provides information to a power controller.

Semi-adaptive voltage scaling for low-energy digital vlsi-design

A semi-adaptive voltage scaling method and device for determining minimal supply voltages for digital electronic semiconductor circuitry, e.g., microprocessors, of electronic devices under production testing and “real” operating conditions. The SAVS operates in a closed-loop during a production test phase of the circuitry and in an open-loop mode in an application (operation) phase of the semiconductor circuitry. During production testing, a lowermost level of the supply voltage for the semiconductor circuitry is determined at one single defined temperature at which operating specifications of the circuit are met. The lowermost level is stored in a dedicated electronic memory of the circuitry together with temperature dependent parameters. Afterwards, when the digital electronic circuitry is operated in a “real” application, e.g., a mobile phone, the device and method reads the previously measured and proven data from the memory and regenerates the minimum level of supply voltage for the circuitry, taking into account the actual temperature of the application. As a result, the digital semiconductor circuitry in the “real” application is supplied with a minimum level of supply voltage, whereby specified parameters of the circuitry are met. Thus, a power consumption of the circuitry is advantageously reduced to a minimum.
Owner:ST ERICSSON SA
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products