Eureka-AI is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Eureka AI

9351results about "Power-operated mechanism" patented technology

System to control daylight and artificial illumination and sun glare in a space

An illumination maintenance system for maintaining a desired illumination profile in a space throughout at least a portion of a day where the illumination sources include daylight and artificial light, the system comprising a first sensor for sensing an illumination level in at least a portion of the space, at least one window treatment for at least one opening for allowing daylight into the space, the window treatment selectively altering the amount of daylight entering the space, a plurality of electric lamps providing artificial light to supplement the daylight illumination of the space; the electric lamps being dimmable, a control system controlling the at least one window treatment and the plurality of electric lamps to maintain the desired illumination profile in the space, the control system controlling the plurality of electric lamps so that the dimming level of each lamp is adjusted to achieve the desired lighting profile and compensate for the daylight illumination in the space throughout at least the portion of the day; and the control system further operating to adjust the window treatment in the event of sun glare through the opening to reduce the sun glare and such that when the desired illumination profile within a defined tolerance is achieved, the control system stops varying the dimming levels of the lamps and the adjustment of the at least one window treatment.

Control system for coverings for architectural openings

A control system for a vertically moveable covering for an architectural opening includes a uni-directional drive assembly that is operated with a single pull element such that upon pulling of the pull element, the covering can be raised in increments. A clutch/brake assembly selectively prevents the covering from dropping by gravity between pulling strokes on the pulling element, but a release of the brake allows the shade to drop by gravity from its retracted position to any degree of extension. A governor is further provided to regulate the rate at which the covering drops by gravity. A cord lift system which is operated by the main drive assembly and the clutch/brake assembly includes a rotatable and axially slidable spool about which a lift cord can be wound. The lift cord has one end anchored to the spool and its opposite end extended through a supporting bracket for the spool and downwardly through the covering where the opposite end is anchored to a bottom rail such that a wrapping of the lift cord about the spool lifts the bottom rail thereby causing the covering to be raised adjacent to the lift spool. The lift cord is tangentially fed to the lift spool and forced into an angular wrap on the spool while an outer shell spaced a small distance from the spool prevents multiple wraps so that the lift cord does not become tangled. A return spring biases the spool in one direction to facilitate a controlled movement of the covering from a retracted to an extended position.

Wireless operating system utilizing a multi-functional wall station transmitter for a motorized door or gate operator

A wireless operating system (10) utilizing a multi-functional wall station (12) for a motorized door/gate operator includes an operator (50) for controlling the movement of a door/gate (54) between various positions. The system has an operator with a receiver (56) and a wall station transmitter (12) for transmitting a signal (42) to the receiver. The signal initiates separate operator functions in addition to opening and closing of the door/gate. A remote transmitter (70) may send a remote signal (74) received by the receiver, wherein the receiver is capable of distinguishing between the wall station signal (42) and the remote signal (74). The wall station includes a transmitter programming button (24), wherein actuation of the transmitter programming button places the wall station transmitter in a learn mode, and wherein subsequent actuation of the remote transmitter positively identifies the remote transmitter for use with the wall station. A light (66) powered by the operator and a light actuation button (18) provided by the wall station transmitter is included in the system. Actuation of the light actuation button (18) functions to switch the light on or off. A pet height button (22), provided by the wall station transmitter, selectively positions the height of the gate/door (54) from its fully closed position to allow ingress and egress of a pet. A delay-close button (20) closes the door/gate after a predetermined period of time. Actuation of a door installation button (28) sequences the door/gate and said operator through various operational parameters to establish a door operating profile. A keyless entry transmitter (80) and a second wall station may also control the operator.

Axial door operator

The present application discloses an axial operator that is configured for use with a door assembly. The axial operator comprises a rotatable operator output member that rotates about an operator axis, the operator output member being constructed and arranged to be operatively connected within the door assembly such that the operator output axis extends generally vertically. An electric motor has a rotatable motor output member that rotates about the operator axis. The motor is constructed and arranged to selectively rotate the motor output member about the operator axis. A reduction transmission is connected between the motor output member and the operator output member. The reduction transmission is constructed and arranged such that the transmission rotates the operator output member at a lower rotational speed than a rotational speed at which the motor rotates the motor output member and applies a higher torque to the operator output member than a torque which the motor applies to the motor output member. The reduction transmission comprises (a) an orbit gear, (b) a planet gear carrier, and (c) a planet gear. The motor is adapted to be communicated to a controller so as to receive a door moving signal therefrom and being further adapted to selectively rotate the motor output member in response to receiving the door moving signal to thereby rotate the operator output member so as to move the door panel with respect to the doorway as aforesaid.
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products