Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

119 results about "3d segmentation" patented technology

Automatic geometrical and mechanical analyzing method and system for tubular structures

A method and system for analyzing tubular structures, such as vascular bodies, with respect to their geometrical properties and mechanical loading conditions is disclosed. To this end, geometrical and structural models of vascular bodies are generated from standard sets of image data. The method or system works automatically and the tubular structure is analyzed within clinical relevant times by users without engineering background. Most critical in that sense is the integration of novel volume meshing and 3D segmentation techniques. The derived geometrical and structural models distinguish between structural relevant types of tissue, e.g., for abdominal aortic aneurysms the vessel wall and the intra-luminal thrombus are considered separately. The structural investigation of the vascular body is based on a detailed nonlinear Finite Element analysis. Here, the derived geometrical model, in-vivo boundary/loading conditions and finite deformation constitutive descriptions of the vascular tissues render the structural biomechanical problem. Different visualization concepts are provided and allow an efficient and detailed investigation of the derived geometrical and mechanical data. In addition, this information is pooled and statistical properties, derived from it, can be used to analyze vascular bodies of interest.
Owner:VASCOPS

Angiographic image acquisition system and method with automatic shutter adaptation for yielding a reduced field of view covering a segmented target structure or lesion for decreasing X-radiation dose in minimally invasive X-ray-guided interventions

The present invention refers to an angiographic image acquisition system and method which can beneficially be used in the scope of minimally invasive image-guided interventions. In particular, the present invention relates to a system and method for graphically visualizing a pre-interventionally virtual 3D representation of a patient's coronary artery tree's vessel segments in a region of interest of a patient's cardiovascular system to be three-dimensionally reconstructed. Optionally, this 3D representation can then be fused with an intraoperatively acquired fluoroscopic 2D live image of an interventional tool. According to the present invention, said method comprises the steps of subjecting the image data set of the 3D representation associated with the precalculated optimal viewing angle to a 3D segmentation algorithm (S4) in order to find the contours of a target structure or lesion to be examined and interventionally treated within a region of interest and automatically adjusting (S5) a collimator wedge position and / or aperture of a shutter mechanism used for collimating an X-ray beam emitted by an X-ray source of a C-arm-based 3D rotational angiography device or rotational gantry-based CT imaging system to which the patient is exposed during an image-guided radiographic examination procedure based on data obtained as a result of said segmentation which indicate the contour and size of said target structure or lesion. The aim is to reduce the region of interest to a field of view that covers said target structure or lesion together with a user-definable portion of the surrounding vasculature.
Owner:KONINKLIJKE PHILIPS ELECTRONICS NV

Surgical puncture path intelligent automatic planning method and system and medical system

The invention provides a surgical puncture path intelligent automatic planning method and system based on machine learning and a medical system. The surgical puncture path intelligent automatic planning method and system based on machine learning and the medical system can rapidly determine a surgical puncture path and a needle inserting point position and can allow a brain stereotaxic apparatus or a medical mechanical arm to achieve automatic puncture surgery operation. The planning method comprises the following steps that (1) sample image data of an existing case are acquired, and trainingdata and test data are made; (2) a three-dimensional segmentation deep neural network model is designed, and the three-dimensional segmentation deep neural network model is trained; (3) the sample image data of a patient are segmented and identified by using the trained three-dimensional segmentation deep neural network model; (4) a three-dimensional model is constructed based on a segmentation identification result and the sample image data; (5) a safe needle insertion constraint area is determined based on the target point position and medical prior information; and (6), in the safe needle insertion constraint area, a three-dimensional space trajectory planning algorithm is utilized to complete surgical puncture path planning.
Owner:HEFEI INSTITUTES OF PHYSICAL SCIENCE - CHINESE ACAD OF SCI +1
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products