Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

37 results about "Oligodendrocyte differentiation" patented technology

The process in which a relatively unspecialized cell acquires the specialized features of an oligodendrocyte. An oligodendrocyte is a type of glial cell involved in myelinating the axons of neurons in the central nervous system. [GOC:vp, PMID:15139015]

Method for preparing tissue engineering spinal cords by using mesenchymal stem cells derived from dermis

The invention discloses a method for preparing tissue engineering spinal cords by using mesenchymal stem cells derived from dermis, which comprises the following steps of 1) separating dMSCs, and carrying out passage on the dMSCs so as to obtain dMSCs primary cells; 2) moving the dMSCs primary cells obtained through separating to an amplification culture medium so as to carry out amplification; and 3) dropwise adding an engineering spinal cord saturated water solution into a physiological saline solution containing deep nerve nutriments, retinoic acid and Neuregulin, standing the obtained mixture, carrying out gradient alcohol dehydration on the mixture, and carrying out vacuum drying on the mixture; and infecting the dMSCs subjected to amplification by using a brain-derived neurenergen adenovirus expression vector, and inoculating cells to an engineering spinal cord material for culturing. In the method, tissue engineering spinal cords can effectively promote cell proliferation; and the differentiation rates of the tissue engineering spinal cords to nerve cells and oligodendroglia cells are respectively about 4.8% and 1.5% which are far higher than those of pure scaffold materials (the differentiation rates of pure scaffold materials to nerve cells and oligodendroglia cells are respectively 1.8% and 0.5%).
Owner:ARMY MEDICAL UNIV

A method for preparing tissue-engineered spinal cord using dermal-derived mesenchymal stem cells

The invention discloses a method for preparing tissue engineering spinal cords by using mesenchymal stem cells derived from dermis, which comprises the following steps of 1) separating dMSCs, and carrying out passage on the dMSCs so as to obtain dMSCs primary cells; 2) moving the dMSCs primary cells obtained through separating to an amplification culture medium so as to carry out amplification; and 3) dropwise adding an engineering spinal cord saturated water solution into a physiological saline solution containing deep nerve nutriments, retinoic acid and Neuregulin, standing the obtained mixture, carrying out gradient alcohol dehydration on the mixture, and carrying out vacuum drying on the mixture; and infecting the dMSCs subjected to amplification by using a brain-derived neurenergen adenovirus expression vector, and inoculating cells to an engineering spinal cord material for culturing. In the method, tissue engineering spinal cords can effectively promote cell proliferation; and the differentiation rates of the tissue engineering spinal cords to nerve cells and oligodendroglia cells are respectively about 4.8% and 1.5% which are far higher than those of pure scaffold materials (the differentiation rates of pure scaffold materials to nerve cells and oligodendroglia cells are respectively 1.8% and 0.5%).
Owner:ARMY MEDICAL UNIV
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products