Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

95 results about "Negative regulator" patented technology

Negative Regulation. The binding of a specific protein (repressor) inhibits transcription from occurring. DNA bound repressors often act to prevent RNA polymerase from binding to the promoter, or by blocking the movement of RNA polymerase.

POP2: NFkB - Inhibiting Polypeptides, Nucleic Acids and Methods of Use

This invention provides a novel pyrin-only protein (POP2), polypeptides, nucleic acids encoding them and methods for making and using them. The polypeptides of this invention have nuclear factor-κB (NF-κB) modulating activity. NF-κB is pivotal for transactivation of cell-cycle regulatory, cytokine and adhesion molecule genes and is dysregulated in many cancers, neurodegenerative disorders, and inflammatory diseases. Proteins with Pyrin and / or caspase recruitment (CARD) domains have roles in apoptosis, innate immunity, and inflammation. Many pyrin domain proteins modulate NF-KB activity as well as participate in assembling both the perinuclear “apoptotic speck” and the pro-IL1β / IL-18 converting inflammasome complex. ‘Pyrin-only’ proteins are attractive as negative regulators of pyrin domain-mediated functions and one such protein, POP1, has been reported. We teach a second Pyrin-only protein (POP2). POP2 is a 294 nt single exon gene located on human chromosome 3 encoding a 97 amino acid protein with sequence and predicted structural similarity to other pyrin domains. Highly similar to pyrin domains in CATERPILLER (CLR, NLR, NALP) family proteins, POP2 is less like the prototypic Pyrin and ASC pyrin domains. POP2 is expressed principally in peripheral blood leukocytes and displays both cytoplasmic and nuclear expression patterns in transfected cells. TNFα-stimulated and p65 (RelA) induced NF-KB-dependent gene transcription is inhibited by POP2 in vitro by a mechanism involving changes in NF-κB nuclear import or distribution. While colocalizing with ASC in perinuclear specks, POP2 also inhibits the formation of specks by the CLR protein CIAS1 / NALP3. Together these observations indicate that POP2 is a negative regulator of NF-KB activity that may influence the assembly of pyrin-domain dependent complexes.
Owner:UNIV OF SOUTH FLORIDA

150 KDA TGF-B1 accessory receptor acts a negative modulator of TGF-B signaling

The present invention relates to a TGF-β1 binding protein called r150. This protein has a GPI-anchor contained in r150 itself and not on a tightly associated protein and that it binds TGF-β1 with an affinity comparable to those of the signaling receptors. Furthermore, the released (soluble) form of this protein binds TGF-β1 independent of the types I and II receptors. Also, the soluble form inhibits the binding of TGF-β to its receptor. In addition, evidence that r150 is released from the cell surface by an endogenous phospholipase C is provided. Also, the creation of a mutant human keratinocyte cell line with a defect in GPI synthesis which displays reduced expression of r150 is described. Our results using these mutant keratinocytes suggest that the membrane anchored form of r150 is a negative modulator of TGF-beta responses. These findings, taken together with the observation that r150 forms a heteromeric complex with the signaling receptors, suggest that this accessory receptor in either its membrane anchored or soluble form may antagonize TGF-β responses in human keratinocytes. Experiments with mutants confirmed that TGFβ1 activity can be modulated when the expression of the accessory receptor r150 is silenced. The complete nucleic acid and deduced amino acid sequences are now provided. The r150 cloned nucleic acid was used to study overexpression of r150. When r150 gene is overexpressed, TGFβ responses are increased. r150 and its derivatives or precursors (fragments, variants and nucleic acids encoding the same) will find a broad clinical utility, knowing that TGFβ1 is an important cytokine.
Owner:9406 2668 QUEBEC INC

Mig-6 knockout mice and elucidation of association of mig-6 with early onset degenerative joint disease and role as a tumor suppressor

InactiveUS20110099644A1Reduce developmentIncreased tumorigenesisAnimal cellsSugar derivativesProgenitorDisease
The molecular mechanism underlying degenerative joint disease, also known as osteoarthritis (OA), is not fully understood. Disruption of mitogen inducible gene 6 (Mig-6) in mice by homologous recombination (KO mice) led to early onset OA as revealed by simultaneous enlargement and deformity of multiple joints, degradation of articular cartilage and the development of bony outgrowths or osteophytes within the joint space. The latter appeared to be derived from proliferation of mesenchymal progenitor cells followed by differentiation into chondrocytes. Because of the striking similarity to human OA, Mig-6 KO mice are a useful animal model for studying the mechanism of this disease and for testing new drugs or therapies for treating OA. These KO mice also developed epithelial hyperplasia, adenoma, and adenocarcinoma in organs such as lung, gallbladder, and bile duct. Mig-6 is therefore a tumor suppressor gene and is a candidate gene for the frequent Ip36 genetic alterations found in lung cancer. It can be used as a tumor biomarker as well as a target for cancer therapy. Mig-6 is located in human chromosome Ip36, a locus frequently associated with human lung cancer. Mig-6 is a negative regulator of EGF signaling, and like EGF, was induced by HGF/SF in human lung cancer cell lines. Frequently the receptors EGFR and Met were co-expressed, and Mig-6 was induced by both EGF and HGF/SF in a MAPK-dependent fashion. Not all tumor lines express Mig-6 in response to either EGF or HGF/SF. In these cases, missense and nonsense mutations in the Mig-6 coding region were found, as was evidence for Mig-6 transcriptional silencing.
Owner:VAN ANDEL RES INST

Inhibition of tumor angiogenesis by combination of thrombospondin-1 and inhibitors of vascular endothelial growth factor

Hepatocyte growth factor/scatter factor (HGF/SF), acting through the Met receptor, plays an important role in most human solid tumors and inappropriate expression of this ligand-receptor pair is often associated with poor prognosis. The molecular basis for the malignant activity imparted by signaling of HGF/SF-Met in cancer cells has been attributed to its mitogenic and invasive properties. However, HGF/SF also induces angiogenesis, but the signaling mechanism has not been understood, nor has this activity been directly associated with HGF/SF-Met mediated tumorigenesis. HGF/SF induces expression in vitro of VEGF, a key agonist of tumor angiogenesis. By contrast, thrombospondin-1 (TSP-1) is a negative regulator of angiogenesis. This application discloses that, in the very same tumor cells, in addition to inducing VEGF expression, HGF/SF dramatically down regulates TSP-1 expression. TSP shut off plays an important, extrinsic role in HGF/SF-mediated tumor development, as ectopic expression of TSP-1 markedly inhibited tumor formation through the suppression of angiogenesis. While VEGF induced expression is sensitive to inhibitors of several pathways, including MAP kinase, PI3 kinase and Stat3, TSP-1 shut off by HGF/SF is prevented solely by inhibiting MAP kinase activation. Thus HGF/SF is a “switch” for turning on angiogenesis. TSP-1 is a useful antagonist to tumor angiogenesis, and therefore TSP-1 and agonist peptides and mimics, as well as inducers of TSP-1, have therapeutic value when used in conjunction with inhibitors of VEGF.
Owner:VAN ANDEL RES INST
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products