Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

222 results about "Surgical planning" patented technology

The surgical planning is the preoperative method of pre-visualising a surgical intervention, in order to predefine the surgical steps and furthermore the bone segment navigation in the context of computer-assisted surgery. The surgical planning is most important in neurosurgery and oral and maxillofacial surgery. The transfer of the surgical planning to the patient is generally made using a medical navigation system.

Computer enhanced surgical navigation imaging system (camera probe)

A system and method for navigation within a surgical field are presented. In exemplary embodiments according to the present invention a micro-camera can be provided in a hand-held navigation probe tracked by a tracking system. This enables navigation within an operative scene by viewing real-time images from the viewpoint of the micro-camera within the navigation probe, which are overlaid with computer generated 3D graphics depicting structures of interest generated from pre-operative scans. Various transparency settings of the camera image and the superimposed 3D graphics can enhance the depth perception, and distances between a tip of the probe and any of the superimposed 3D structures along a virtual ray extending from the probe tip can be dynamically displayed in the combined image. In exemplary embodiments of the invention a virtual interface can be displayed adjacent to the combined image on a system display, thus facilitating interaction with various navigation related functions. In exemplary embodiments according to the present invention virtual reality systems can be used to plan surgical approaches with multi-modal CT and MRI data. This allows for generating 3D structures as well as marking ideal surgical paths. The system and method presented thus enable transfer of a surgical planning scenario to a real-time view of an actual surgical field, thus enhancing navigation.
Owner:BRACCO IMAGINIG SPA

Computer enhanced surgical navigation imaging system (camera probe)

A system and method for navigation within a surgical field are presented. In exemplary embodiments according to the present invention a micro-camera can be provided in a hand-held navigation probe tracked by a tracking system. This enables navigation within an operative scene by viewing real-time images from the viewpoint of the micro-camera within the navigation probe, which are overlaid with computer generated 3D graphics depicting structures of interest generated from pre-operative scans. Various transparency settings of the camera image and the superimposed 3D graphics can enhance the depth perception, and distances between a tip of the probe and any of the superimposed 3D structures along a virtual ray extending from the probe tip can be dynamically displayed in the combined image. In exemplary embodiments of the invention a virtual interface can be displayed adjacent to the combined image on a system display, thus facilitating interaction with various navigation related functions. In exemplary embodiments according to the present invention virtual reality systems can be used to plan surgical approaches with multi-modal CT and MRI data. This allows for generating 3D structures as well as marking ideal surgical paths. The system and method presented thus enable transfer of a surgical planning scenario to a real-time view of an actual surgical field, thus enhancing navigation.
Owner:BRACCO IMAGINIG SPA

Hepatic tumor comprehensive surgical planning analogy method and system thereof based on three-dimensional multimode images

The invention discloses a hepatic tumor comprehensive surgical planning analogy method and a system thereof based on three-dimensional multimode images. The method comprises the steps that firstly, a data base containing the data of an object is constructed; secondly, three-dimensional registration and fusion are conducted on the medical images, having different modes or single mode and different periods, of the object; thirdly, a specific tissue is divided by the automatic and semi-automatic modes, and the three-dimensional modeling of important tissues in and around the liver is realized by the three-dimensional reconstruction technology so as to reconstruct an abdominal three-dimensional model having the immersion and interaction features; fourthly, before-simulation comprehensive risk analysis is conducted based on the modeling result, referred to the practice guidelines and combined with the object information; and finally, all kinds of simulation surgical plans are designed according to the result of the comprehensive risk analysis, surgical simulation with strong sense of reality is conducted, a surgical route is planned, and risk and prognosis analysis is conducted on the planning simulation result. Through repeated surgical simulations, the surgical skills and the mastery of a user can be improved, and medical teaching can be conducted through the method and the system.
Owner:RAYCAN TECH CO LTD SU ZHOU +1

Image simulation method for intracranial aneurysm interventional therapy stent implantation

The invention provides a visualization calculation method for a whole intracranial aneurysm interventional therapy stent implantation process, establishes a stent release expansion model, provides an effective numerical simulation method for the intracranial aneurysm interventional therapy stent implantation, and provides a visualization method used for detection, calculation and analysis of the surgical planning of intracranial aneurysm interventional therapy. The adopted technical scheme is as follows: firstly, a blood vessel centerline is utilized to implant a numerical simulation stent into the blood vessel, and an active contour model is utilized to perform stent expansion, then the distance of each two nodes of the stent is changeless through optimization, and finally hemodynamics calculation and analysis are performed, and optimal configuration for stent implantation is simulated and calculated. The image simulation method can be directly applied to three-dimensional vascular angiography tomographic images, enables the stent to keep own geometric morphological characters through optimization, and can utilize weight adjustment to enable the stent to be clung to the blood vessel wall as far as possible. The simulation process can control the stent implantation position conveniently, and better clinical application value is achieved in the surgical planning of interventional therapy.
Owner:CAPITAL UNIVERSITY OF MEDICAL SCIENCES
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products