Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

125results about "Dissolving using flow mixing" patented technology

Slow release coolant filter

A coolant filter for use in filtering a coolant solution which flows through the coolant filter includes a filter housing assembly which is made up of an outer housing which is crimped to a nutplate which defines an internally threaded flow outlet. A generally cylindrical filter element is positioned inside of the filter housing assembly and a first endplate is bonded to the end of the filter element which is adjacent to the nutplate. An endplate member is provided for attachment to the opposite end of the filter element and is configured in such a way so as to define an interior chamber where supplemental coolant additive pellets are stored. A closing plate is applied across the open end of the interior chamber so as to create an enclosed chamber for the supplemental coolant additive pellets. A slow release mechanism is provided for controlling the rate of release of the supplemental coolant additive from the enclosed chamber into the coolant solution. In one embodiment of the present invention, the slow release mechanism includes a diffusion tube which defines a diffusion orifice. In another embodiment of the present invention, the slow release mechanism includes a semipermeable (or osmotic) membrane wafer. In both instances, the slow release mechanism is positioned between the source of supplemental coolant additive and the flow outlet in the nutplate.
Owner:FLEETGUARD INC

Chlorination apparatus and method

Apparatus and method for dissolving chemical tablets for creating a variable rate of chemical dissolution in a stream of constant flow rate of untreated liquid, especially water. The apparatus includes a housing in which a container is placed. The container includes a sieve plate or perforated grid which separates the container into an upper chamber in which chemical tablets are stored and a lower mixing chamber. A collection reservoir is defined in an annular outside the container wall and inside of the housing. Several arrangements are illustrated by which a vortex of liquid is generated of controllable variable intensity in the lower or mixing chamber thereby creating uneven liquid pressure beneath the perforated grid as a function of radial distance. As a result, fluid passes aggressively through outer radial perforations or holes in the grid and which impinge on the chemical tablets stacked on the grid. The liquid circulates in the upper chamber from the outward radial position toward the center of the grid plate, while eroding the tablets, and returns to the mixing chamber. A portion of the liquid exits into the collection reservoir. Liquid communication also exits from a hole in the bottom of the lower mixing chamber, which is open to the collection reservoir. Varying the intensity of the vortex varies the rate of chemical dissolution, yet the flow rate of liquid through the apparatus is constant.
Owner:HAMMONDS TECHN SERVICES

Chlorination apparatus and method

Apparatus and method for dissolving chemical tablets for creating a variable rate of chemical dissolution in a stream of constant flow rate of untreated liquid, especially water. The apparatus includes a housing in which a container is placed. The container includes a sieve plate or perforated grid which separates the container into an upper chamber in which chemical tablets are stored and a lower mixing chamber. A collection reservoir is defined in an annular outside the container wall and inside of the housing. Several arrangements are illustrated by which a vortex of liquid is generated of controllable variable intensity in the lower or mixing chamber thereby creating uneven liquid pressure beneath the perforated grid as a function of radial distance. As a result, fluid passes aggressively through outer radial perforations or holes in the grid and which impinge on the chemical tablets stacked on the grid. The liquid circulates in the upper chamber from the outward radial position toward the center of the grid plate, while eroding the tablets, and returns to the mixing chamber. A portion of the liquid exits into the collection reservoir. Liquid communication also exits from a hole in the bottom of the lower mixing chamber, which is open to the collection reservoir. Varying the intensity of the vortex varies the rate of chemical dissolution, yet the flow rate of liquid through the apparatus is constant.
Owner:HAMMONDS TECHN SERVICES

Additive dispersing filter and method of making

A method for dispersing an additive from an additive cartridge disposed in a housing of an oil filter is provided herein, the method includes using stagnation pressure to disperse the additive from the additive cartridge; and regulating a flow rate of the additive from the additive cartridge by restricting an inlet opening of an outlet tube of the additive cartridge. Also provide herein is an additive cartridge for dispersing an additive within a filter housing, the additive cartridge having a housing defining a receiving area for receipt of the additive; a fluid inlet path through a wall of the housing, the fluid inlet path providing a means for increasing a pressure within the receiving area, the fluid inlet path having an inlet opening disposed adjacent to an outer wall portion of the housing; and a fluid outlet path through the wall of the housing, the fluid outlet path providing a means for dispersing the additive from the receiving area when the pressure within the receiving area exceeds a predetermined value, the fluid outlet path having an outlet opening disposed adjacent to the outer wall portion of the housing, the outlet opening being covered by a shroud configured to deflect fluid flowing in a first direction away from the outlet opening and the inlet opening of the fluid inlet path is positioned to receive fluid flowing in the first direction; and fluid flow of the additive through the fluid outlet path is controlled by varying an inlet opening of the fluid outlet path.
Owner:BMO HARRIS BANK N A AS SUCCESSOR COLLATERAL AGENT +1
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products