Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

80results about How to "Limit bending" patented technology

Quasi-zero stiffness vibration isolator with annular permanent magnets used for generating negative stiffness

A quasi-zero stiffness vibration isolator with annular permanent magnets used for generating negative stiffness comprises a base and an outer cylinder connected with the base, the outer permanent magnet is arranged in a top notch of the outer cylinder, an upper cover is connected with the outer cylinder, a sliding bearing is combined with a central hole of the upper cover in a sleeved mode, and a central shaft is sleeved with the sliding bearing and is in clearance fit with the sliding bearing. A sleeve and an adjusting sleeve are sequentially connected to the position, located on the lower portion of the sliding bearing, of the central shaft, and the inner permanent magnet is installed in the sleeve. A spring is arranged at the bottom of the central shaft in a sleeving mode, the bottom end of the spring is fixed to the base, and the top end of the spring is fixed to the adjusting sleeve. A mark line on the central shaft is used for representing the position of the inner permanent magnet relative to the outer permanent magnet. When the mark line coincides with the upper end face of the sliding bearing, the inner permanent magnet exactly faces the outer permanent magnet, and the isolator is in a normal working state. The quasi-zero stiffness vibration isolator has the advantages of being high in static stiffness and low in dynamic stiffness, basic stimulation with large amplitude can be isolated, and the mass of a vibration-isolated objected can be adjusted.
Owner:XI AN JIAOTONG UNIV

Flexible pipe connected to an end fitting

A pipe structure comprising a length of a flexible pipe connected to an end fitting, the flexible pipe comprising an armour layer and an underlying pipe layer the armour layer, the underlying pipe layer having an outer surface around which armouring wires of an armouring layer are helically wound. The pipe structure provides a coupling between a flexible pipe comprising armouring wires and an end fitting, the coupling exerting a relatively low bending or flexure strain on the wires during normal operation of the flexible pipe. The transition path of an armouring wire between the flexible pipe and the end fitting comprises a straight-line-section between a wire-pipe-exit-point where the wire extends away from its underlying pipe layer and a straight-line-end-point on a support unit of the end fitting where the armouring wire in question has its first tangential point of contact. This has the advantage that in a loaded situation where the armouring wires will elongate elastically leading to a change in the helical angle of the armouring wires, the pipe structure will experience a slight twist and a controlled bending of the armouring wires on the surface of the support unit (due to a possible change in the base point of contact of the armouring wire with the support unit induced by the change of helical angle), thereby avoiding substantial bending of the individual armouring wires, which is of particular importance when the armouring wires are formed of a composite material. The pipe structure may be used in flexible pipes for the off shore transport of fluids (e.g. oil).
Owner:NKT FLEXIBLES IS

Flexible pipe connected to an end fitting

The invention relates to a pipe structure (10) comprising a length of a flexible pipe connected to an end fitting, the flexible pipe comprising an armour layer (11; 19) and an underlying pipe layer (12; 11) to said armour layer, said underlying pipe layer having an outer surface around which armouring wires (111; 191) of an armouring layer are helically wound. The object of the present invention is to provide a coupling between a flexible pipe comprising armouring wires and an end fitting, the coupling exerting a relatively low bending or flexure strain on the wires during normal operation of the flexible pipe. The problem is solved in that the transition path of an armouring wire between the flexible pipe and the end fitting comprises an straight-line-section (194) between a wire-pipe-exit-point (195) where the wire extends away from its underlying pipe layer and a straight-line-end-point (196) on a support unit (15) of the end fitting where the armouring wire in question has its first tangential point of contact. This ahs the advantage that in a loaded situation where the armouring wires will elongate elastically leading to a change in the helical angle of the armouring wires, a pipe structure according to the invention will experience a slight twist and a controlled bending of the armouring wires on the surface of the support unit (due to a possible change in the base point of contact of the armouring wire with the support unit induced by the change of helical angle), thereby avoiding substantial bending of the individual armouring wires, which is of particular importance when the armouring wires are formed of a composite material. The invention may be used in flexible pipes for the off shore transport of fluids (e.g. oil).
Owner:NKT FLEXIBLES IS
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products