Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

47 results about "Adrenomedullin" patented technology

Adrenomedullin (ADM or AM) is a vasodilator peptide hormone of uncertain significance in human health and disease. It was initially isolated in 1993 from a pheochromocytoma, a tumor of the adrenal medulla: hence the name.

Labelled adrenomedullin derivatives and their use for imaging and therapy

The present invention relates to an adrenomedullin derivative including an adrenomedullin peptide chelated with at least one active agent. Examples of active agents include a paramagnetic element, a radioactive element and a fibrinolytic agent, among others. Paramagnetic agents have a distribution that is relatively easily shown through Magnetic Resonance Imaging (MRI). Radioactive agents have applications in imaging and delivery of radiations, depending on the specific element included in the active agent. Delivery of fibrinolytic agents mainly to a specific organ, such us for example to the lungs, allows to substantially improve the specificity and efficacy of thrombolytic therapy by allowing local delivery of the fibrinolytic agent, thereby reducing the risks of major bleeding in the therapy of the organ. If the organ is the lungs, a non-limiting example of pathology treatable with the fibrinolytic is pulmonary embolus.
Owner:PULMOSCI

Methods for Regenerating and Repairing Damaged Tissues Using Adrenomedullin

[Problems to be Solved] An objective of the present invention is to provide methods for regenerating or repairing damaged tissues using adrenomedullin. Another objective is to provide pharmaceutical agents that comprise adrenomedullin as an active ingredient for regenerating or repairing damaged tissues.
[Means for Solving the Problems] To solve the above problems, the present inventors administered adrenomedullin (hereinafter indicated as AM) or physiological saline to C57BL/6 mice, and counted the numbers of mononuclear cells and Sca-1-positive cells in the blood. The result showed that AM increased the numbers of mononuclear cells and stem cell antigen-1-positive cells in the blood. It was also shown that by administering AM to a mouse model of pulmonary emphysema and a rat model of acute myocardial infarction, the quantity of bone marrow-derived cells that migrated and settled into the damaged tissues increased, and the recruited bone marrow cells differentiated into blood vessels, alveoli, and cardiac muscle at the lesion sites. Further, decrease in infarct size, suppression of the enlargement of alveolar diameter, and improvement of organ functions were confirmed in the models of myocardial infarction and pulmonary emphysema.
Owner:HUBIT GENOMIX +1
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products