Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

213 results about "Urokinase" patented technology

Urokinase, also known as urokinase-type plasminogen activator (uPA), is a serine protease present in humans and other animals. The human urokinase protein was discovered, but not named, by McFarlane and Pilling in 1947. Urokinase was originally isolated from human urine, and it is also present in the blood and in the extracellular matrix of many tissues. The primary physiological substrate of this enzyme is plasminogen, which is an inactive form (zymogen) of the serine protease plasmin. Activation of plasmin triggers a proteolytic cascade that, depending on the physiological environment, participates in thrombolysis or extracellular matrix degradation. This cascade had been involved in vascular diseases and cancer progression.

Treating or preventing the early stages of degeneration of articular cartilage or subchondral bone in mammals using carprofen and derivatives

Treating or preventing the early stages of degeneration of articular cartilage or subchondral bone in the affected joint of a mammal is accomplished by administering a chondroprotective compound of Formula (I):where A is hydroxy, (C1-C4)alkoxy, amino, hydroxy-amino, mono-(C1-C2)alkylamino, di-(C1-C2)alkylamino; X and Y are independently H or (C1-C2)alkyl; and n is 1 or 2; R6 is halogen, (C1-C3)alkyl, trifluoromethyl, or nitro; R9 is H; (C1-C2)alkyl; phenyl or phenyl-(C1-C2)alkyl, where phenyl is optionally mono-substituted by fluoro or chloro; -C(=O)-R, where R is (C1-C2)alkyl or phenyl, optionally mono-substituted by fluoro or chloro; or -C(=O)-O-R', where R1 is (C1-C2)alkyl.This treatment ameliorates, diminishes, actively treats, reverses or prevents any injury, damage or loss of articular cartilage or subchondral bone subsequent to said early stage of said degeneration. Whether or not a mammal needs such treatment is determined by whether or not it exhibits a statistically significant deviation from normal standard values in synovial fluid or membrane from the affected joint, with respect to at least five of the following substances: increased interleukin-1 beta (IL-1beta); increased tumor necrosis factor alpha (TNFalpha); increased ratio of IL-1beta to IL-1 receptor antagonist protein (IRAP); increased expression of p55 TNF receptors (p55 TNF-R); increased interleukin-6 (IL-6); increased leukemia inhibitory factor (LIF); decreased insulin-like growth factor-1 (IGF-1); decreased transforming growth factor beta (TGFbeta); decreased platelet-derived growth factor (PDGF); decreased basic fibroblast growth factor (b-FGF); increased keratan sulfate; increased stromelysin; increased ratio of stromelysin to tissue inhibitor of metalloproteases (TIMP); increased osteocalcin; increased alkaline phosphatase; increased cAMP responsive to hormone challenge; increased urokinase plasminogen activator (uPA); increased cartilage oligomeric matrix protein; and increased collagenase.
Owner:PFIZER INC +1

Antimicrobial amino acid sequences derived from alpha-melanocyte-stimulating hormone

The presence of the ancient anti-inflammatory peptide α-melanocyte stimulating hormone (α-MSH [1-13], SYSMEHFRWGKPV) in barrier organs such as gut and skin suggests a role in the nonspecific (innate) host defense system. α-MSH and other amino acid sequences derived from α-MSH were determined to have antimicrobial influences, including against two major and representative cutaneous and mucosal pathogens: Staphylococcus aureus and Candida albicans. C-MSH peptides had antimicrobial effects against S. aureus and significantly reversed the enhancing effect of urokinase on S. aureus colony formation. α-MSH and other amino acid sequences reduced C. albicans viability and germination. α-MSH peptides also enhanced C. albicans killing by human neutrophils. The antimicrobial agent is selected from the group consisting of one or more peptides including the amino acid sequence KPV, one or more peptides including the amino acid sequence MEHFRWG, or a biologically functional equivalent of any of the foregoing. The most effective of the peptides were those bearing the C-terminal amino acid sequence of α-MSH, i.e., α-MSH (1-13), (6-13), and (11-13). The α-MSH “core” sequence (4-10), important for melanotropic effects, was also effective but significantly less potent. Antimicrobial influences of α-MSH peptides could be mediated by their well-known capacity to increase cellular cAMP; this messenger was significantly augmented in peptide-treated yeast. α-MSH has potent anti-inflammatory effects and is expected to be useful for treatment of inflammation in human and veterinary disorders. Reduced killing of pathogens is a detrimental consequence of therapy with corticosteroids and nonsteroidal anti-inflammatory drugs during infection. Therefore, anti-inflammatory agents based on α-MSH peptides that do not reduce microbial killing, but rather enhance it, would be very useful. The antimicrobial effects of these α-MSH peptides occurred over a broad range of concentrations including the physiological (picomolar) range.
Owner:ZENGEN
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products