Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

126 results about "Photoplethysmogram" patented technology

A photoplethysmogram (PPG) is an optically obtained plethysmogram that can be used to detect blood volume changes in the microvascular bed of tissue. A PPG is often obtained by using a pulse oximeter which illuminates the skin and measures changes in light absorption. A conventional pulse oximeter monitors the perfusion of blood to the dermis and subcutaneous tissue of the skin.

Method For Determining Hemodynamic Effects Of Positive Pressure Ventilation

The present disclosure relates, in some embodiments, to devices, systems, and/or methods for collecting, processing, and/or displaying stroke volume and/or cardiac output data. For example, a device for assessing changes in cardiac output and/or stroke volume of a subject receiving airway support may comprise a processor; an airway sensor in communication with the processor, wherein the airway sensor is configured and arranged to sense pressure in the subject's airway, lungs, and/or intrapleural space over time; a blood volume sensor in communication with the processor, wherein the blood volume sensor is configured and arranged to sense pulsatile volume of blood in a tissue of the subject over time; and a display configured and arranged to display a representative of an airway pressure, a pulsatile blood volume, a photoplethysmogram, a photoplethysmogram ratio, the determined cardiac output and/or stroke volume, or combinations thereof. A method of assessing changes in cardiac output or stroke volume of a subject receiving airway support from a breathing assistance system may comprise sensing pressure in the subject's airway as a function of time, sensing pulsatile volume of blood in a tissue of the subject as a function of time, producing a photoplethysmogram from the sensed pulsatile volume, determining the ratio of the amplitude of the photoplethysmogram during inhalation to the amplitude of the photoplethysmogram during exhalation, and determining the change in cardiac output or stroke volume of the subject using the determined ratio.
Owner:TYCO HEALTHCARE GRP LP

Method and device for detecting blood pressure calibration time point

An electronic device includes housing, a user interface disposed in a first part of the housing, a photoplethysmogram (PPG) sensor disposed to be exposed through a second part of the housing, the PPG sensor configured to calculate a blood pressure value while contacting a portion of a body, at least one sensor, a wireless communication circuit disposed in the interior of the housing, a processor disposed in the interior of the housing, and operatively connected to the user interface, the PPG sensor, the at least one sensor, and the wireless communication circuit, and a memory operatively connected to the processor, wherein the memory stores instructions that, when executed by the processor, control the electronic device to: receive first data from the at least one sensor, receive second data from the PPG sensor based at least in part on the received first data, determine a pulse arrival time (PAT) value, a heart rate (HR) value, and a pulse transit time (PTT) value from the second data, calculate a first blood pressure value (BP1) and a second blood pressure value (BP2) by applying the determined values to pulse wave velocity (PWV) algorithms of Equations 1 and 2, wherein BP1≅a1PAT+b1HR+c1 . . . Equation 1, BP2≅a2 ln(PTT)+b2 . . . Equation 2 in Equations 1 and 2, a1, a2, b1, b2, and c1 are constant values for matching blood pressure values measured during calibration with blood pressure values measured by a cuff hemodynamometer, determine a calibration time point based at least in part on a difference between the first blood pressure value and the second blood pressure value, and provide guide information related to the calibration time point through the user interface based at least in part on the determination.
Owner:SAMSUNG ELECTRONICS CO LTD

Method for determining hemodynamic effects

The present disclosure relates, in some embodiments, to devices, systems, and / or methods for collecting, processing, and / or displaying stroke volume and / or cardiac output data. For example, a device for assessing changes in cardiac output and / or stroke volume of a subject receiving airway support may comprise a processor; an airway sensor in communication with the processor, wherein the airway sensor is configured and arranged to sense pressure in the subject's airway, lungs, and / or intrapleural space over time; a blood volume sensor in communication with the processor, wherein the blood volume sensor is configured and arranged to sense pulsatile volume of blood in a tissue of the subject over time; and a display configured and arranged to display a representative of an airway pressure, a pulsatile blood volume, a photoplethysmogram, a photoplethysmogram ratio, the determined cardiac output and / or stroke volume, or combinations thereof. A method of assessing changes in cardiac output or stroke volume of a subject receiving airway support from a breathing assistance system may comprise sensing pressure in the subject's airway as a function of time, sensing pulsatile volume of blood in a tissue of the subject as a function of time, producing a photoplethysmogram from the sensed pulsatile volume, determining the ratio of the amplitude of the photoplethysmogram during inhalation to the amplitude of the photoplethysmogram during exhalation, and determining the change in cardiac output or stroke volume of the subject using the determined ratio.
Owner:TYCO HEALTHCARE GRP LP
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products