Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

47 results about "Subsurface sediments" patented technology

Method for modelling the production of hydrocarbons by a subsurface deposit which are subject to depletion

A method for forming a model simulating production, by an underground reservoir subject to depletion, of hydrocarbons comprising notably relatively high-viscosity oils. From laboratory measurements of the respective volumes of oil and gas produced by rock samples from the reservoir subject to depletion, and the relative permeabilities (Kr) of rock samples to hydrocarbons, a model of the formation and flow of the gas fraction is used to determine a volume transfer coefficient (hv) by means of an empirical function representing the distribution of nuclei that can be activated at a pressure P (function N(P)) which is calibrated with reference to the previous measurements. Considering that the nuclei distribution N(P) in the reservoir rocks is the same as the distribution measured in the laboratory, the numerical transfer coefficient corresponding thereto in the reservoir at selected depletion rates is determined using the gas fraction formation and flow model, which allows predicting the relative permeabilities in the reservoir and the production thereof which is useful for reservoir engineering. Method for forming a model allowing to simulate the production, by an underground reservoir subjected to depletion, of hydrocarbons comprising notably relatively high-viscosity oils. From laboratory measurements of the respective volumes of oil and gas produced by rock samples from the reservoir and subjected to depletion, and the relative permeabilities (Kr) of rock samples to hydrocarbons, a model of the formation and flow of the gas fraction is used to determine a volume transfer coefficient (hv) by means of an empirical function representing the distribution of nuclei that can be activated at a pressure P (function N(P)) which is calibrated with reference to the previous measurements. Considering that the nuclei distribution N(P) in the reservoir rocks is the same as the distribution measured in the laboratory, the numerical transfer coefficient corresponding thereto in the reservoir at selected depletion rates is determined using the gas fraction formation and flow model, which allows to predict the relative permeabilities in the reservoir and the production thereof. Applications notably reservoir engineering.
Owner:INST FR DU PETROLE
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products