Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

385 results about "Irrigation fluids" patented technology

Apparatus for performing a discectomy through a trans-sacral axial bore within the vertebrae of the spine

Methods and apparatus for and performing a partial or complete discectomy of an intervertebral spinal disc accessed by one or more trans-sacral axial spinal instrumentation/fusion (TASIF) axial bore formed through vertebral bodies in general alignment with a visualized, trans-sacral anterior or posterior axial instrumentation/fusion line (AAIFL or PAIFL) line. A discectomy instrument is introduced through the axial bore, the axial disc opening, and into the nucleus to locate a discectomy instrument cutting head at the distal end of the discectomy instrument shaft within the nucleus. The cutting head is operated by operating means coupled to the instrument body proximal end for extending the cutting head laterally away from the disc opening within the nucleus of the intervertebral spinal disc and for operating the cutting head to form a disc cavity within the annulus extending laterally and away from the disc opening or a disc space wherein the disc cavity extends through at least a portion of the annulus. A discectomy sheath that is first introduced to extend from the skin incision through the axial bore and into the axial disc opening having a discectomy sheath lumen that the discectomy instrument is introduced through. The discectomy sheath is preferably employed for irrigation and aspiration of the disc cavity or just aspiration if irrigation fluids are introduced through a discectomy instrument shaft lumen. The cutting head of the discectomy tool is deflected from the sheath lumen laterally and radially toward the annulus using a deflecting catheter or pull wire.
Owner:TRANSI

Apparatus for performing a discectomy through a trans-sacral axial bore within the vertebrae of the spine

Methods and apparatus for and performing a partial or complete discectomy of an intervertebral spinal disc accessed by one or more trans-sacral axial spinal instrumentation / fusion (TASIF) axial bore formed through vertebral bodies in general alignment with a visualized, trans-sacral anterior or posterior axial instrumentation / fusion line (AAIFL or PAIFL) line. A discectomy instrument is introduced through the axial bore, the axial disc opening, and into the nucleus to locate a discectomy instrument cutting head at the distal end of the discectomy instrument shaft within the nucleus. The cutting head is operated by operating means coupled to the instrument body proximal end for extending the cutting head laterally away from the disc opening within the nucleus of the intervertebral spinal disc and for operating the cutting head to form a disc cavity within the annulus extending laterally and away from the disc opening or a disc space wherein the disc cavity extends through at least a portion of the annulus. A discectomy sheath that is first introduced to extend from the skin incision through the axial bore and into the axial disc opening having a discectomy sheath lumen that the discectomy instrument is introduced through. The discectomy sheath is preferably employed for irrigation and aspiration of the disc cavity or just aspiration if irrigation fluids are introduced through a discectomy instrument shaft lumen. The cutting head of the discectomy tool is deflected from the sheath lumen laterally and radially toward the annulus using a deflecting catheter or pull wire.
Owner:BAXANO SURGICAL

Apparatus and methods for removing vertebral bone and disc tissue

Tissue removal probes comprise an elongated member, a drive shaft rotatably disposed within the member, and a rotatably tissue removal element mounted to the distal end of the drive shaft. One tissue removal element comprises a plurality of tissue-cutting filaments affixed at proximal and distal ends of the tissue removal element. The cutting filaments may have optional hinge points that allow the distal end of the tissue removal element to be inverted, thereby transforming the tissue removal element from a tissue-cutting device to a tissue-grasping device. Another tissue removal element may have a blunted tip to prevent distal tissue trauma and an irrigation port to provide irrigation fluid to the removed tissue and / or tissue removal element. Another tissue removal element has a proximal and distal spiral grooves that are oppositely pitched, so that removed tissue can be collected in the middle of the tissue removal element. Another tissue removal element has independent counter-rotating tissue removal elements to maintain stability during a bone cutting procedure. Still another tissue removal element takes the form of a drill bit with fluted cutting grooves. Yet another tissue removal element has cascading tissue-cutting notches that can be reciprocatably moved to remove tissue within a hole.
Owner:BOSTON SCI SCIMED INC
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products