Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

62 results about "Mimo transceiver" patented technology

Reconfigurable MIMO transceiver and method for use therewith

A wireless transceiver includes a plurality of antennas. A plurality of signal recovery circuits generate a selected number of received signals from a first subset of the plurality of antennas, based on a control signal. A receiver section recovers an inbound data stream from the selected number of received signals. A plurality of transmitter sections generate a selected number of transmitted signals to a second subset of the plurality of antennas, based on the control signal, wherein the intersection between the first subset of the plurality of antennas and the second subset of the plurality of antennas is the null set for each value of the control signal.
Owner:NXP USA INC

Multiple band multiple input multiple output transceiver integrated circuit

A MIMO transceiver integrated circuit (IC) includes a plurality of multiple band direct conversion transmitter sections, a plurality of multiple band direct conversion receiver sections, and a local oscillation generation module. Each of the plurality of multiple band direct conversion transmitter sections includes a transmit baseband module and a multiple frequency band transmission module. Each of the plurality of multiple band direct conversion receiver sections includes a multiple frequency band reception module and a receiver baseband module. The local oscillation generation module is operably coupled to generate the first frequency band local oscillation when the multiple band MIMO transceiver IC is in a first mode and operably coupled to generate the second frequency band local oscillation when the multiple band MIMO transceiver IC is in a second mode.
Owner:AVAGO TECH INT SALES PTE LTD

Synchronizer, method of synchronizing signals and MIMO transceiver employing the same

The present invention provides a synchronizer for use with a multiple-input, multiple-output (MIMO) transceiver employing multiple individual transceivers. In one embodiment, the synchronizer includes a synthesizing unit coupled to a reference oscillator and configured to generate separately synthesized radio frequency (RF) signals having relative phase differences. Additionally, the synchronizer also includes a synchronizing unit coupled to the synthesizer unit and configured to adjust the relative phase differences of the separately synthesized RF signals to be less than a predetermined difference to provide synchronization of the multiple individual transceivers based on the predetermined difference.
Owner:TEXAS INSTR INC

Power consumption management in a MIMO transceiver and method for use therewith

A mobile communication device includes a first wireless transceiver that receives a first inbound RF signal and that transmits a first outbound RF signal based on a first power supply signal. A second wireless transceiver receives a second inbound RF signal and that transmits a second outbound RF signal based on a second power supply signal. A processing module generates at least one power mode signal based on first transmit power control data received via the first inbound RF signal. A power management circuit adjusts a first power consumption parameter of the first power supply signal and a second power consumption parameter of the second power supply signal based on the at least one power mode signal.
Owner:AVAGO TECH INT SALES PTE LTD

Multi-antenna handheld wireless communication device

Antenna systems for handheld wireless communication devices (100) that comprise a first unbalanced feed antenna (112, 718, 802, 1204, 1812) and a second balanced feed antenna dipole antenna (202, 716, 804, 1202, 1802) that are located next to a ground structure (116, 810, 1210, 1824) for the handheld wireless communication devices are provided. The balanced feed dipole antenna and the unbalanced feed antenna exhibit disparate spatial-polarization patterns which are suitable for use with a MIMO transceiver, and the decorrelation of signals received by the two antennas is preserved due to a low level of coupling through the ground structure, which is due, in part, to differences in the symmetry properties of current patterns in the ground structure that are associated with the operation of the two antennas. The two antennas can also be used in a transceiver (629) that uses separate antennas to receive and transmit.
Owner:GOOGLE TECH HLDG LLC

Method and apparatus for adaptive reduced overhead transmit beamforming for wireless communication systems

A multi input multi output (MIMO) transceiver having a channel estimation module being responsive to received samples including channel state information (CSI) and operative to generate time domain beamforming parameters, in accordance with an embodiment of the present invention. The multi input multi output (MIMO) transceiver further includes an adaptive beamforming parameters module coupled to receive said time domain beamforming parameters and operative to generate time domain adaptive beamforming parameters, said adaptive beamforming parameters module operative to process said time domain beamforming parameters to generate frequency domain adaptive beamforming parameters, a decoding module coupled to receive said frequency domain adaptive beamforming parameters and operative to generate data bits, a channel parameters module coupled to receive said data bits and operative to extract said time domain adaptive beamforming parameters, an encoding module coupled to receive said time domain adaptive beamforming parameters and operative to generate a data packet, said encoding module operative to encode said data packet to generate a modulated data stream, and a beamform matrices module coupled to receive said modulated data stream and operative to generate a beamformed data stream based on said frequency domain adaptive beamforming parameters, said MIMO transceiver operative to process said beamformed data stream to generate output signals and to transmit said output signals by forming beam patterns.
Owner:MEDIATEK INC

Multiple band multiple input multiple output transceiver integrated circuit

A MIMO transceiver integrated circuit (IC) includes a plurality of multiple band direct conversion transmitter sections, a plurality of multiple band direct conversion receiver sections, and a local oscillation generation module. Each of the plurality of multiple band direct conversion transmitter sections includes a transmit baseband module and a multiple frequency band transmission module. Each of the plurality of multiple band direct conversion receiver sections includes a multiple frequency band reception module and a receiver baseband module. The local oscillation generation module is operably coupled to generate the first frequency band local oscillation when the multiple band MIMO transceiver IC is in a first mode and operably coupled to generate the second frequency band local oscillation when the multiple band MIMO transceiver IC is in a second mode.
Owner:AVAGO TECH INT SALES PTE LTD

Local oscillation routing plan applicable to a multiple RF band RF MIMO transceiver

Local oscillation circuitry for use in an RF transceiver Integrated Circuit (IC) includes local oscillation generation circuitry operable to produce a local oscillation and local oscillation distribution circuitry. The local oscillation distribution circuitry includes a splitting circuit, a first distribution portion, and a second distribution portion. The splitting circuit receives the local oscillation and produces multiple copies of the local oscillation. The first distribution portion produces a first local oscillation corresponding to a first RF band and a second local oscillation corresponding to a second RF band based and to provide the first local oscillation and the second local oscillation to a first RF transceiver group. The second distribution portion produces a first local oscillation and a second local oscillation and provides the first local oscillation and the second local oscillation to the second RF transceiver group.
Owner:AVAGO TECH INT SALES PTE LTD

System For Charging Wireless Devices

A case (100) is provided for housing and charging one or more wireless devices (180), such as wireless earbuds. The case (100) includes capacitive sensing circuitry (120) for detecting whether the wireless devices (180) are positioned inside the case (100) based on a capacitance of the wireless devices (180). The case (100) also includes a transceiver (150) for transmitting data to and receiving data from the wireless devices (180). When the wireless devices (180) are positioned inside the case (100), an electrical component (110) inside the case operatively connects the capacitive sensing circuitry (120) and the transceiver (150) of the case (100) to the wireless devices (180). The case (100) further includes one or more processors (140) for controlling the capacitive sensing circuitry (120), the transceiver (150), and the electrical component (110).
Owner:GOOGLE LLC

MIMO transceiver suitable for a massive-mimo system

An embodiment of the disclosed MIMO transceiver uses a single master clock to generate (i) the sampling-clock signals for the analog-to-digital and digital-to-analog converters and (ii) the multiple electrical local-oscillator signals that are used in various channels of the transceiver's analog down- and up-converters to translate signals between the corresponding intermediate-frequency and RF bands. The MIMO transceiver may employ a plurality of interconnected frequency dividers configured to variously divide the master-clock frequency to generate the sampling-clock signals and the multiple local-oscillator signals in a manner that causes these signals to have different respective frequencies. In embodiments designed for operating in the mmW band, the MIMO transceiver may also employ a frequency multiplier configured to multiply the master-clock frequency to generate an additional local-oscillator signal for translating signals between the mmW and RF bands.
Owner:ALCATEL-LUCENT USA INC

Independent power consumption management in a MIMO transceiver and method for use therewith

An integrated circuit (IC) includes a multi-input multi-output transceiver system that includes a plurality of RF transceivers. Each RF transceiver includes an RF transmitter that transmits a transmit signal at a selected transmit power, based on a transmit power control signal and a corresponding RF receiver for receiving a corresponding one of a plurality of received signals from an external device and for generating a signal strength indication corresponding to each of the plurality of received signals. A processing module generates the transmit power control signal for each RF transmitter based on the signal strength indication of the corresponding RF receiver, and that generates a power mode signal for adjusting a power consumption parameter of each RF transmitter in accordance with the selected transmit power for each RF transmitter.
Owner:AVAGO TECH INT SALES PTE LTD

MIMO transceiver with pooled adaptive digital filtering

MIMO transceiver with a reconfigurable pooled digital filter is disclosed. A processor sets parameters of the filter to minimize the number of instructions per second and the amount of power required by the filter to perform, while matching the filter to at least one of: a transmitter filter and a receiver filter. The processor uses an algorithm or a lookup table stored in memory to select the combination of filter parameters. The parameters may be selected from at least one of: a number of taps, a filter length, a word length, a coefficient quantization, a sampling rate, bits per sample, a sampling bit, a tap delay and a coefficient length. After selecting a combination of filter parameters, the processor sends a control signal to the adaptive filter. The pooled adaptive filter reconfigures itself in accordance with the selected filter parameters.
Owner:SAMSUNG ELECTRONICS CO LTD

Multiple band multiple input multiple output transceiver integrated circuit

The invention discloses a MIMO transceiver integrated circuit (IC)which includes a plurality of multiple band direct conversion transmitter sections, a plurality of multiple band direct conversion receiver sections, and a local oscillation generation module. Each of the plurality of multiple band direct conversion transmitter sections includes a transmit baseband module and a multiple frequency band transmission module. Each of the plurality of multiple band direct conversion receiver sections includes a multiple frequency band reception module and a receiver baseband module. The local oscillation generation module is operably coupled to generate the first frequency band local oscillation when the multiple band MIMO transceiver IC is in a first mode and operably coupled to generate the second frequency band local oscillation when the multiple band MIMO transceiver IC is in a second mode.
Owner:BROADCOM CORP

Method and apparatus for adaptive reduced overhead transmit beamforming for wireless communication systems

A multi input multi output (MIMO) transceiver having a channel estimation module being responsive to received samples including channel state information (CSI) and operative to generate time domain beamforming parameters, in accordance with an embodiment of the present invention. The multi input multi output (MIMO) transceiver further includes an adaptive beamforming parameters module coupled to receive said time domain beamforming parameters and operative to generate time domain adaptive beamforming parameters, said adaptive beamforming parameters module operative to process said time domain beamforming parameters to generate frequency domain adaptive beamforming parameters, a decoding module coupled to receive said frequency domain adaptive beamforming parameters and operative to generate data bits, a channel parameters module coupled to receive said data bits and operative to extract said time domain adaptive beamforming parameters, an encoding module coupled to receive said time domain adaptive beamforming parameters and operative to generate a data packet, said encoding module operative to encode said data packet to generate a modulated data stream, and a beamform matrices module coupled to receive said modulated data stream and operative to generate a beamformed data stream based on said frequency domain adaptive beamforming parameters, said MIMO transceiver operative to process said beamformed data stream to generate output signals and to transmit said output signals by forming beam patterns.
Owner:MEDIATEK INC

Multiple input multiple output transceiver

An exemplary MIMO transceiver includes a first transmitting channel and a second transmitting channel. The first transmitting channel includes a first power amplifier and a first transmission line which are connected together in series. The second transmitting channel includes a second power amplifier. A common terminal of a first single pole double throw (SPDT) switch is connected to the second power amplifier. A first terminal of the first SPDT switch is connected to the first power amplifier through a second transmission line. A common terminal of a second SPDT switch is connected to the second power amplifier. A first terminal of second SPDT switch is connected to the first power amplifier through a third transmission line. A second terminal of the second SPDT switch is connected to a second antenna. The first power amplifier, the second transmission line, and the third transmission line cooperatively act as a balance power amplifier.
Owner:CLOUD NETWORK TECH SINGAPORE PTE LTD

Multi-beam MIMO antenna systems and methods

This application proposes multi-beam antenna systems using spherical lens with high isolation between antenna ports and compatible to 2×2, 4×4, 8×8 MIMO transceivers. Several compact multi-band, multi-beam solutions (with wideband operation, 40%+, in each band) are achieved by creating dual-band radiators movable on a track around one or more spherical lenses and by placing lower band radiators between spherical lenses. By using secondary lenses for high band radiators, coupling between low band and high band radiators is reduced. Beam tilt range and side lobe suppression are improved through phase shifting and / or a rotational angle of radiators. A wide beam tilt range (0-40 degree) can be achieved via the proposed multi-beam antenna systems. Each beam can be independently tilted. Based on proposed single and multi-lens antenna solutions, cell coverage improvements and stadium tribune coverage optimization are also achieved, together with a reduction in interference.
Owner:MATSING PTE

Local oscillation routing plan applicable to a multiple RF band RF MIMO transceiver

Local oscillation circuitry for use in an RF transceiver Integrated Circuit (IC) includes local oscillation generation circuitry operable to produce a local oscillation and local oscillation distribution circuitry. The local oscillation distribution circuitry includes a splitting circuit, a first distribution portion, and a second distribution portion. The splitting circuit receives the local oscillation and produces multiple copies of the local oscillation. The first distribution portion produces a first local oscillation corresponding to a first RF band and a second local oscillation corresponding to a second RF band based and to provide the first local oscillation and the second local oscillation to a first RF transceiver group. The second distribution portion produces a first local oscillation and a second local oscillation and provides the first local oscillation and the second local oscillation to the second RF transceiver group.
Owner:AVAGO TECH INT SALES PTE LTD

Reconfigurable, bi-directional, multi-band front end for a hybrid beamforming transceiver

Designs and techniques to enhance power-efficiency and incorporate new features in millimeter-wave MIMO transceivers are described. A new mechanism for built-in dual-band, per-element self-interference cancellation (SIC) is introduced to enable multi-antenna frequency-division duplex (FDD) and full-duplex (FD) operation. Additionally, several innovative circuit concepts are introduced, including low-loss wideband antenna interface design, dual-band power combining PA, dual-band RF-SIC design, and bi-directional MIMO signal path design.
Owner:CARNEGIE MELLON UNIV

Transceiver device capable of calibration and calibration method used by the same

A transceiver device capable of calibration, and a calibration method used by the transceiver device. The transceiver device includes a reference transceiver, a plurality of remaining transceivers, and a plurality of transmission calibration paths connecting the remaining transceivers to the reference transceiver for transmission calibration of the remaining transceivers. An envelope detector included in the reference transceiver is shared with the remaining transceivers. When implementing a multiple input multiple output (MIMO) transceiver in a single chip, the chip size and manufacturing cost of the MIMO transceiver device can be substantially reduced.
Owner:SAMSUNG ELECTRONICS CO LTD

System and method for synchronized triggering of test equipment for testing mimo transceivers

A system and method for testing multiple-input-multiple-output (MIMO) devices under test (DUTs) with multiple radio frequency (RF) signal testers. Each tester receives one or more RF signals from one or more of the DUTs, and the testers are mutually coupled in a ring such that successive ones receive a trigger input signal from an upstream tester and provide a trigger output signal to a downstream tester. Each tester is responsive to its input trigger signal and its one or more RF signals by providing its output trigger signal such that its output trigger signal has an asserted state initiated in response to an assertion of its input trigger signal and a transcending of a predetermined magnitude by at least one of the one or more RF signals.
Owner:LITEPOINT

MIMO receiver, qr decomposition and multi-dimensional detection used in the MIMO receiver

Provided are a receiver of a Multiple Input Multiple Output (MIMO) system, QR decomposition and multi-dimensional detection used in the receiver. The receiver includes: a QR decomposing unit for performing a QR decomposing operation in cycles 1 to nT-n−1, and performing a column exchanging operation in cycles nT-n to nT as QR decomposition where n and T are an integer number; and a multi-dimensional detecting unit for receiving a first R matrix Ry and a second R matrix Rz from the QR decomposing unit, calculating a first distance value for detecting an mth symbol for the first R matrix and a second distance value for detecting an mth symbol for the second R matrix, and simultaneously detecting an mth symbol and an (m−1)th symbol using the first distance value and the second distance value.
Owner:ELECTRONICS & TELECOMM RES INST

Power management method of MIMO (Multiple Input Multiple Output) network

InactiveCN102802245AAchieve single-endedRealize double-ended controlPower managementHigh level techniquesMimo antennaClosed loop
The invention discloses a power management method of an MIMO (Multiple Input Multiple Output) network. The method is based on the mutual interference of an MIMO under a mobile system and is also called as an antenna management method. The power management method comprises the steps of: 1) obtaining minimum data rate information needed by communication from an MAC (Media Access Control) layer to ensure that the practical communication data rate is larger than limiting conditions; 2) estimating the channel capacity from information of a physical layer, wherein the estimating operation comprises of the steps of closed loop channel estimation and open loop channel estimation; 3) according to two conditions of the data rate and the channel capacity, generating an optimal power management scheme, and configuring an MIMO transceiver. According to the power management method, due to the power management, MIMO antenna states can be configured effectively, and the power consumption caused by the transmission of each bit of data through an MIMO front-end interface can be reduced, so that an MIMO antenna can be configured dynamically.
Owner:CHONGQING UNIV

Optical transceiver with variably positioned insert

An optical transceiver includes a transceiver housing configured to receive an optical sub-assembly insert. The optical sub-assembly insert includes duplex cavities configured to hold a transmit optical sub-assembly front end and a receive optical sub-assembly front end in a fixed spatial orientation for a given optical connector interface. The optical sub-assembly insert is configurable to fit inside a transceiver housing with a relatively wide range of X and Y dimensional tolerance. In one implementation, the X-Y position of the optical sub-assembly insert is dictated by the position of the transmit optical-sub assembly front end after its corresponding back end has been mounted to a heat dissipation element. Any gaps that form between the optical sub-assembly insert and the inside surface of the transceiver housing as a result of the transmit optical sub-assembly position can be accommodated with filler material.
Owner:II VI DELAWARE INC

Transceiver with multi-wavelength coexistence

A transceiver with multi-wavelength coexistence is disclosed. A BOSA (bi-direction optical sub-assembly), a PCB (203) and a fiber receptacle (102) are disposed within a transceiver housing; the PCB (203) is horizontally arranged in the transceiver housing; the fiber receptacle (102) is disposed on the BOSA; the BOSA comprises multiple transmitters (0004) and multiple receivers (0003) all of which are optically coupled with the fiber receptacle (102) and electrically connected with the PCB (103); two or more BOSAs, which are stacked in parallel or perpendicular to the PCB (203), are disposed in the transceiver housing and respectively connected with an external fiber through multiple fiber receptacles (102).
Owner:CHEN PEIJUAN
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products