Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

117 results about "Operative laparoscopy" patented technology

Operative laparoscopy is minimally invasive surgery performed through flexible tubes (laparoscopes) with lighting and viewing capabilities. The tubes are inserted into the body through one or more small incisions in the skin.

Implantable prosthesis

An implantable prosthesis for repairing an anatomical defect, such as a tissue or muscle wall hernia, including an umbilical hernia, and for preventing the occurrence of a hernia at a small opening or weakness in a tissue or muscle wall, such as at a puncture tract opening remaining after completion of a laparoscopic procedure. The prosthesis includes a patch and / or plug having a body portion that is larger than a portion of the opening or weakness so that placement of the body portion against the defect will cover or extend across that portion of the opening or weakness. At least one tether, such as a strap, extends from the patch or plug and may be manipulated by a surgeon to position the patch or plug relative to the repair site and / or to secure the patch or plug relative to the opening or weakness in the tissue or muscle wall. The tether may be configured to extend through the defect and outside a patient's body to allow a surgeon to position and / or manipulate the patch from a location outside the body. An indicator may be provided on the tether as an aid for a surgeon in determining when the patch or plug has been inserted a sufficient distance within the patient. A support member may be arranged in or on the patch or plug to help deploy the patch or plug at the surgical site and / or help inhibit collapse or buckling of the patch or plug. The patch or plug may be configured with a pocket or cavity to facilitate the deployment and / or positioning of the patch or plug over the opening or weakness.
Owner:DAVOL

Real-time 3-d ultrasound guidance of surgical robotics

Laparoscopic ultrasound has seen increased use as a surgical aide in general, gynecological, and urological procedures. The application of real-time three-dimensional (RT3D) ultrasound to these laparoscopic procedures may increase information available to the surgeon and serve as an additional intraoperative guidance tool. The integration of RT3D with recent advances in robotic surgery can also increase automation and ease of use. In one non-limiting exemplary implementation, a 1 cm diameter probe for RT3D has been used laparoscopically for in vivo imaging of a canine. The probe, which operates at 5 MHz, was used to image the spleen, liver, and gall bladder as well as to guide surgical instruments. Furthermore, the 3D measurement system of the volumetric scanner used with this probe was tested as a guidance mechanism for a robotic linear motion system in order to simulate the feasibility of RT3D / robotic surgery integration. Using images acquired with the 3D laparoscopic ultrasound device, coordinates were acquired by the scanner and used to direct a robotically controlled needle towards desired in vitro targets as well as targets in a post-mortem canine. The RMS error for these measurements was 1.34 mm using optical alignment and 0.76 mm using ultrasound alignment.
Owner:THE UNIV OF NORTH CAROLINA AT CHAPEL HILL +1
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products