Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

121 results about "Surgical probe" patented technology

Spatial magnetic interrogation

PCT No. PCT / GB96 / 00823 Sec. 371 Date Jan. 12, 1998 Sec. 102(e) Date Jan. 12, 1998 PCT Filed Apr. 3, 1996 PCT Pub. No. WO96 / 31790 PCT Pub. Date Oct. 10, 1996Magnetic tags or markers are disclosed, together with a variety of techniques by means of which such tags may be interrogated. In one aspect, the magnetic marker or tag which is characterized by carrying a plurality of discrete magnetically active regions in a linear array. In another aspect, the invention provides a method of interrogating a magnetic tag or marker within a predetermined interrogation zone, the tag comprising a high permeability magnetic material, for example to read data stored magnetically in the tag or to use the response of the tag to detect its presence and / or to determine its position within the interrogation zone, characterized in that the interrogation process includes the step of subjecting the tag sequentially to: (1) a magnetic field sufficient in field strength to sacurate the high permeability magnetic material, and (2) a magnetic null as herein defined. Applications of such techniques are describer, inter alia, in relation to (a) identifying articles to which tags are attached; (b) accurate determination of position, as in the location of surgical probes; and (c) totalisation of purchases, where cash item carries a tag coded with data representing its nature and its price.
Owner:DIGITAL MAGNETIC TECH L L C

Catheter tracking with phase information

The present invention discloses a method for determining the position and / or orientation of a catheter or other interventional access device or surgical probe using phase patterns in a magnetic resonance (MR) signal. In the method of the invention, global two-dimensional correlations are used to identify the phase pattern and orientation of individual microcoils, which is unique for each microcoil's position and orientation. In a preferred embodiment of the invention, tracking of interventional devices is performed by one integrated phase image projected onto the axial plane and a second image in an oblique plane through the center of the coil and normal to the coil plane. In another preferred embodiment, the position and orientation of a catheter tip can be reliably tracked using low resolution MR scans clinically useful for real-time interventional MRI applications. In a further preferred embodiment, the invention provides real-time computer control to track the position of endovascular access devices and interventional treatment systems, including surgical tools and tissue manipulators, devices for in vivo delivery of drugs, angioplasty devices, biopsy and sampling devices, devices for delivery of RF, thermal, microwave or laser energy or ionizing radiation, and internal illumination and imaging devices, such as catheters, endoscopes, laparoscopes, and related instruments.
Owner:SUNNYBROOK HEALTH SCI CENT +1

Multifunction surgical probe

A multifunction surgical probe is disclosed, one embodiment comprising: a handpiece, operable to receive a light beam from a laser; and a firing switch operable to provide a firing control signal to cause the laser to fire and emit the light beam. The surgical prove can further comprise an interface communicatively coupled to the firing switch and operable to communicate the firing control signal to the laser. The laser can be operably coupled to a surgical console operable to control the laser, and the interface can be communicatively coupled to the firing switch and operable to communicatively couple the surgical probe to the surgical console and to communicate the firing control signal to the surgical console. The surgical console can be operable to control the laser based on the firing control signal. The surgical probe can also comprise an interlock switch operable to prevent the firing switch from firing the laser and a standby switch operable to produce a standby control signal to switch the laser between a stand-by and a ready state. The firing switch can be a progressively actuated switch operable to, at a first point in its range of motion, provide an initializing control signal operable to initialize the laser in preparation for firing and then, at a second point in its range of motion, provide the firing control signal to cause the laser to fire.
Owner:ALCON INC

Calibrated surgical probe

A microsurgical probe tip and method of using same are disclosed. One embodiment of the microsurgical probe tip comprises: an outer cutting member, comprising a first tube having a wall, a closed end and a port formed in the wall near the closed end; an inner cutting member, comprising a second tube coaxial with and operable to move in a reciprocating motion within the first tube and having a first end operable to be coupled to a driving mechanism and a second end with a cutting edge for cutting tissue; a first alignment mark on the outer cutting member at a first predetermined position adjacent to the port; and a second alignment mark on the inner cutting member at a second predetermined position adjacent to the cutting edge of the inner cutting member, wherein the second alignment mark is visible through the port and operable to be aligned with the first alignment mark such that when the first and second alignment marks are aligned, a preferred relative positioning between the inner and outer cutting members is achieved. The microsurgical probe tip can further comprise one or more radial alignment marks on the inner cutting member, wherein the radial alignment marks are parallel to one another at fixed intervals from one another and positioned so that one or more of the radial alignment marks are visible through the port so as to indicate the relative lateral positioning between the inner cutting member and the outer cutting member. The radial alignment marks can be made by a method, or combination of methods, such as laser cutting, inkjet printing, and mechanical scribing. The driving mechanism can be a pneumatic driving mechanism, an electro-mechanical driving mechanism, and/or a magnetic driving mechanism. The microsurgical probe tip can further comprising a plurality of gauge marks on an outer surface of the outer cutting member, wherein the gauge marks are parallel to one another at a fixed interval (e.g., 1 millimeter) from one another and positioned so that the gauge marks can be used as a measuring tool in a surgical environment
Owner:ALCON INC
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products