Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

208 results about "Thermosiphon" patented technology

Thermosiphon (or thermosyphon) is a method of passive heat exchange, based on natural convection, which circulates a fluid without the necessity of a mechanical pump. Thermosiphoning is used for circulation of liquids and volatile gases in heating and cooling applications such as heat pumps, water heaters, boilers and furnaces. Thermosiphoning also occurs across air temperature gradients such as those utilized in a wood fire chimney or solar chimney.

Thermal management system and method for electronics system

A thermal energy management system is provided having a heat spreading device that is operatively engaged with at least one semiconductor chip and a thermal bus operatively engaged with the heat spreading device so as to transport thermal energy from the heat spreading device to a heat sink. The heat spreading device includes a heat pipe and the thermal bus includes a loop thermosyphon. A second thermal bus may be operatively engaged with the first thermal bus so as to transport thermal energy from the first thermal bus to a heat sink. The second thermal bus may also include a loop thermosyphon. A method of managing thermal energy in an electronic system is also provided that includes spreading thermal energy generated by one or more devices over a surface that is relatively larger than the devices, thermally coupling an evaporator portion of a loop thermosyphon to the surface, and thermally coupling a condensing portion of the loop thermosyphon to a thermal energy sink, e.g., a second loop thermosyphon, convection fin, or cold plate.
Owner:THERMAL

Compact thermosiphon for dissipating heat generated by electronic components

A compact thermosiphon assembly for dissipating heat generated by electronic components using a working fluid includes a tube having a first end and a second end and a flat cross section defining an elongated chamber is disclosed. The tube has an evaporation region for receiving heat to evaporate the working fluid into a vaporized working fluid within the chamber disposed between a first condensation region and a second condensation region opposite the first condensation region for condensing the vaporized working fluid back into a liquefied working fluid within the chamber. Each of the condensation regions have a first portion extending upwardly at a first angle from the evaporation region and a second portion extending upwardly at a second angle different than the first angle.
Owner:COOLIT SYSTEMS INC

Low-profile thermosyphon-based cooling system for computers and other electronic devices

This invention provides a cooling system comprising a thermosyphon for computer and electronic devices. The thermosyphon comprises an evaporator placed on top of a heat source, such as CPU. Heat from the heat source causes liquid coolant inside the evaporator to evaporate or boil. The resulting vapor enters a condenser and returns to a liquid phase. Cooling fins are attached to the condenser to facilitate heat transfer with the surrounding airflow. The cooling system and computer or electronic device fit within standard computer cases and high density server rack-mountable cases.
Owner:BELITS COMP SYST

Cooling system and electronic apparatus applying the same therein

A cooling system applying a thermo siphon therein, being superior in energy saving and / or ecology, with an effective cooling, and also an electronic apparatus applying that therein, in particular, for cooling a CPU 200 mounted on a printed circuit board 100 within a housing thereof, comprises a heat-receiving jacket 310, being thermally connected with a surface of the CPU generating heats therein, and for evaporating liquid refrigerant stored in a pressure-reduced inner space with heat generation thereof, a condenser 320 for receiving refrigerant vapor from the heat-receiving jacket within a pressure-reduced inner space thereof and for condensing the refrigerant vapor into a liquid by transferring the heats into an outside of the apparatus, a vapor tube 331, and a liquid return tube 332, with applying the thermo siphon for circulating the refrigerant due to phase change thereof, wherein the condenser forms fine grooves on an inner wall surface thereof along a direction of flow of the refrigerant, and is also formed flat in a cross-section thereof, for cooling the refrigerant vapor from the heat-receiving jacket on the inner wall surface thereof, efficiently.
Owner:HITACHI LTD

Liquid cooled thermosiphon with flexible partition

A fluid heat exchanger assembly cools an electronic device with a cooling fluid supplied from a heat extractor to an upper portion of a housing. A refrigerant is disposed in a lower portion of the housing for liquid-to-vapor transformation. A partition divides the upper portion of the housing from the lower portion and is flexible to vary the volume of the upper portion for modulating the flow of coolant fluid through the upper portion in response to heat transferred by an electronic device to the lower portion of the housing.
Owner:DELPHI TECH INC

Low-profile thermosyphon-based cooling system for computers and other electronic devices

This invention provides a cooling system comprising a thermosyphon for computer and electronic devices. The thermosyphon comprises an evaporator placed on top of a heat source, such as CPU. Heat from the heat source causes liquid coolant inside the evaporator to evaporate or boil. The resulting vapor enters a condenser and returns to a liquid phase. Cooling fins are attached to the condenser to facilitate heat transfer with the surrounding airflow. The cooling system and computer or electronic device fit within standard computer cases and high density server rack-mountable cases.
Owner:BELITS COMP SYST INC

Apparatus and method for cooling integrated circuit devices

Some embodiments of a method and apparatus for cooling integrated circuit devices are described. In one embodiment, the apparatus includes a thermosiphon having an evaporator portion coupled to a first surface of a heat source and a condenser portion coupled to the evaporator portion distal from the first surface of the heat source. A remote heat exchanger is coupled to the condenser of the thermosiphon. In addition, one or more thermoelectric elements are coupled between the heat exchanger and the condenser of the thermosiphon. In one embodiment, the remote heat exchanger, the thermoelectric elements and the condenser portion of the thermosiphon are located outside a chassis of a one rack unit (1U) server computer.
Owner:INTEL CORP

Low-Profile Thermosyphon-Based Cooling System for Computers and Other Electronic Devices

This invention provides a cooling system comprising a thermosyphon for computer and electronic devices. The thermosyphon comprises an evaporator placed on top of a heat source, such as CPU. Heat from the heat source causes liquid coolant inside the evaporator to evaporate or boil. The resulting vapor enters a condenser and returns to a liquid phase. Cooling fins are attached to the condenser to facilitate heat transfer with the surrounding airflow. The cooling system and computer or electronic device fit within standard computer cases and high density server rack-mountable cases.
Owner:BELITS COMP SYST

Orientation insensitive thermosiphon capable of operation in upside down position

The invention provides a heat exchanger assembly having a housing which defines a boiling chamber extending along an axis between opposite ends. A plurality of first condensing tubes extend axially and downwardly in one direction at a first predetermined angle to and below the axis (A) from the housing and a plurality of second condensing tubes extend axially and upwardly in the opposite direction at the same predetermined angle to and above the axis (A) from the housing. The volume of refrigerant in the housing is greater than the volume of the second condensing tubes and the volume of the boiling chamber.
Owner:DELPHI TECH INC

Evaporatively cooled thermosiphon

A thermosiphon cooling assembly cools an electronic device with a first refrigerant disposed in the lower boiling chamber of a housing for liquid-to-vapor transformation and a second refrigerant disposed in an upper evaporating chamber of a housing for liquid-to-vapor transformation. The partition separating the lower boiling chamber of the housing from the upper evaporating chamber of the housing creates a series of vapor chambers within the lower boiling portion for condensing vapor boiled off the first refrigerant. The upper evaporating chamber contains a series of refrigerant pockets interleaved vertically with the vapor chambers to increase the surface area for heat transfer between the refrigerant vapor and the second refrigerant for absorbing heat by the second refrigerant for liquid-to-vapor transformation.
Owner:DELPHI TECH INC

Microchannel cooling device with magnetocaloric pumping

The invention discloses a microchannel cooling device, adapted for dissipating heat generated from an electronic device, which comprises: a heat sink, being arranged on the electronic device and having an inlet, an outlet and a plurality of microchannels embedded thereon for receiving a ferrofluid to flow therein; a condenser, having an outlet connected to the inlet of the heat sink and an inlet connected to the outlet of the heat sink; and a magnetocaloric pump, for providing a magnetic field to the ferrofluid flowing in the heat sink; wherein the magnetocaloric effect (MCE) caused by the working of the magnetic field on the ferrofluid flowing in the heat sink is used for driving the ferrofluid to flow through the plural microchannels of the heat sink while absorbing heat therefrom, and thereafter, the heated ferrofluid flow into the condenser for discharging heat and then the cool-down ferrofluid is guided back to the heat sink to complete a circulation. The invention make use of the high heat transfer performance of the plural microchannels, the nature circulation caused by the loop thermosyphone and the driving of the magnetocaloric pump so as to constitute a cooling device with no mechanically moving elements.
Owner:IND TECH RES INST

Electric machine with thermosiphon-type cooling system

An electric machine includes a housing for accommodating a rotatably supported rotor and a stationary stator, and a cooling device for cooling heat-generating components of the rotor and the stator. The cooling device includes a closed-flow system having an evaporator disposed in the housing, a condenser disposed outside the housing at a geodetically higher location, and a closed tube assembly, which connects the condenser and the evaporator, for circulating a coolant using a thermosiphon effect as a result of a difference in density between vapor and liquid portions of the coolant. The closed-flow system contains a liquid-vapor mixture of the coolant in a saturated state and includes a first tube for conducting coolant to the evaporator and a second tube for conducting coolant away from the evaporator. The first tube has hereby a cross section which is smaller than a cross section of the second tube.
Owner:SIEMENS AG

Thermosyphon and method for producing it

The present invention relates to thermosyphons, in particular for use in the cooling of electronic components. In a first embodiment a thermosyphon is manufactured by extruding a base (1) and milling a channel structure in the base to produce a plurality of fins (5) extending vertically from the base. A lid (3) comprising a number of fins (4) extending vertically from the lid is placed over the heat sink channel structure so that a thermosyphon of an expanding channel system is formed. In a second embodiment the evaporator and condenser sections are separated and connected by pipes. To form a leak proof seal between the lid and the base, joining is preferably done by friction stir welding. By providing an extruded thermosyphon, heat transfer is made more efficient than when junctions are used. The present invention provides a new way of efficiently manufacturing an integrated structure, while keeping the heat transfer of the structure high.
Owner:SAPA

Loop type thermo siphon, stirling cooling chamber, and cooling apparatus

A loop thermosyphon includes a closed circuit configured of an evaporator, a condenser, a feed pope and a return pope, and the evaporator is an assembly including a header pipe associated with the feed pope, a header pipe associated with the return pipe, and a plurality of aligned pipes. Each of the aligned popes is a serpentine tube defined by a linear portion forming a plurality of stages in vertically parallel layers, and a curved portion connecting such linear portions together. The condenser is entirely inclined relative to a bottom surface of a casing mounting the loop thermosyphon such that the serpentine tube's linear portions have a bottommost linear portion inclined in a direction allowing the bottommost linear portion to be closer to the bottom surface of the casing as the bottommost linear portion approaches the header pipe associated with the return pipe.
Owner:SHARP KK

Orientation insensitive thermosiphon of v-configuration

The invention provides a heat exchanger assembly for cooling an electronic device wherein the upper portion of the housing includes a plurality of condensing tubes extending upwardly from the lower portion of the housing. A plurality of air heat transfer fins zigzag transversely to a primary axis (A) between adjacent ones of the condensing tubes for dissipating heat from vapor boiled off of the refrigerant. At least two next adjacent condensing tubes of the plurality diverge upwardly from the bottom ends toward the top distal ends thereof. Accordingly, the space containing the air heat transfer fins between the two next adjacent condensing tubes is greater at the top distal ends than at the bottom ends of the condensing tubes. The condensing tubes can either have a constant cross-section with diverging tube axes or can have a decreasing cross-section from bottom to top with parallel tube axes.
Owner:DELPHI TECH INC

Electronic apparatus

An electronic apparatus, such as a blade server or the like, has a cooling system for efficiently cooling a plurality of heat generating semiconductor devices, such as a CPU, mounted on blades which is freely put on and taken off. The cooling system includes a thermosiphon which transfers heat from devices having relatively high heat generation, such as CPU or the like, to the outside of the apparatus, heat pipes which transfer heat of devices having relatively low heat generation to the thermosiphon, a thermal highway which is thermally coupled to the thermosiphon by the mounting of blades into a housing and collects and transfers the heat from the thermosiphon and the heat pipes, and a condenser which transfers the heat collected and transferred by the thermal highway outside a housing.
Owner:HITACHI LTD

Low-profile thermosyphon-based cooling system for computers and other electronic devices

This invention provides a cooling system comprising a thermosyphon for computer and electronic devices. The thermosyphon comprises an evaporator placed on top of a heat source, such as CPU. Heat from the heat source causes liquid coolant inside the evaporator to evaporate or boil. The resulting vapor enters a condenser and returns to a liquid phase. Cooling fins are attached to the condenser to facilitate heat transfer with the surrounding airflow. The cooling system and computer or electronic device fit within standard computer cases and high density server rack-mountable cases.
Owner:BELITS COMP SYST

Ground-Coupled Heat Exchange for Heating and Air Conditioning Applications

The invention provides systems and methods for cooling and / or heating a structure. Generally, a system for heating or cooling a structure can include at least one thermosiphon in thermal communication with a thermal storage material such as a volume of earth. The thermosiphon can be partially filled with a heat transfer fluid and a heat exchanger operatively connected to the thermosiphon which is in thermal communication with the structure. Thermal energy can be transferred between the thermal storage material and the structure in either a passive or assisted mode, depending on whether the system is charging or in use.
Owner:UNIV OF UTAH RES FOUND

Thermosiphon Systems for Electronic Devices

A thermosiphon system includes a condenser, an evaporator, and a condensate line fluidically coupling the condenser to the evaporator. The condensate line can be a tube with parallel passages can be used to carry the liquid condensate from the condenser to the evaporator and to carry the vapor from the evaporator to the condenser. The evaporator can be integrated into the tube. The condenser can be constructed with an angled core. The entire assembly can be constructed using a single material, e.g., aluminum, and can be brazed together in a single brazing operation.
Owner:GOOGLE LLC

Methods and apparatus for recycling cryogenic liquid or gas from test chambers

Methods and apparatus are presented which allow efficient environmental testing of components such as printed circuit boards, integrated circuits, sub-systems and other components. In one method of the invention, a component can be placed into a chamber having an internal space filled with a gaseous atmosphere. The component is indirectly cooled by smartly positioning one or more cooling coils near the component to be tested, and the cooling coils are fed with a cryogenic fluid from a source of cryogenic fluid. The warm cryogenic fluid is recycled by one of two means: a thermosiphon conduit loop, and a storage and compression facility for reusing the warm cryogenic fluid. The internal space is preferably filled with a dry gas.
Owner:AIR LIQUIDE IND US LP

Cooling system and electronic apparatus using the same

The invention relates to a cooling system and an electronic apparatus using the same, and particularly aims to use a thermosiphon as the cooling system and derives an optimum shape (inter-fin gap, fin height, and fin upper-end hole diameter) of a boiling heat transfer surface for different coolants. In a cooling system using a thermosiphon according to the invention, an optimum shape (inter-fin gap, fin height, and fin upper-end hole diameter) of a boiling heat transfer surface of a heat receiving jacket that forms the cooling system is identified based on a critical radius of a steam bubble produced in an overheated liquid and the diameter of an air bubble departing from the heat transfer surface for a variety of coolants.
Owner:HITACHI LTD

Loop-type thermosiphon and stirling refrigerator

A loop-type thermosiphon capable of stable operation regardless of fluctuation of heat load and a Stirling refrigerator using the same are provided. The loop-type thermosiphon transferring heat from a high-temperature heat source using a working fluid includes a evaporator having a heat absorption portion and evaporating the working fluid by depriving the high-temperature heat source of heat through the heat absorption portion, a condenser located above the high-temperature heat source and condensing the working fluid that has evaporated in the evaporator, and a pipe connecting the evaporator and the condenser so as to form a loop. In the loop-type thermosiphon, the working fluid that has passed through the condenser is brought in contact with the heat absorption portion before it is pooled in a liquid pool for the working fluid in the evaporator, so as to exchange heat with the same
Owner:SHARP KK

Direct jet impingement-assisted thermosyphon cooling apparatus and method

Cooling apparatuses and methods are provided for facilitating cooling of an electronic device utilizing a cooling subassembly, a pump and a controller. The cooling subassembly includes a jet impingement structure, and a thermosyphon. The jet impingement structure directs coolant into a chamber of the subassembly onto a surface to be cooled when in a jet impingement mode, and the thermosyphon, which is associated with the chamber, facilitates convective cooling of the surface to be cooled via boiling of coolant within the chamber when in a thermosyphon mode. The controller, which is coupled to the pump to control activation and deactivation of the pump, also controls transitioning between the jet impingement mode and the thermosyphon mode based on a sensed temperature of the electronic device.
Owner:IBM CORP

Electric machine with thermosiphon-type cooling system

An electric machine includes a housing for accommodating a rotatably supported rotor and a stationary stator, and a cooling device for cooling heat-generating components of the rotor and the stator. The cooling device comprises a closed-flow system having an evaporator disposed in the housing, a condenser disposed outside the housing at a geodetically higher location, and a closed tube assembly, which connects the condenser and the evaporator, for circulating a coolant using a thermosiphon effect as a result of a difference in density between vapor and liquid portions of the coolant. The closed-flow system contains a liquid-vapor mixture of the coolant in a saturated state and includes a first tube for conducting coolant to the evaporator and a second tube for conducting coolant away from the evaporator. The first tube has hereby a cross section which is smaller than a cross section of the second tube.
Owner:SIEMENS AG

Batch target and method for producing radionuclide

An apparatus for producing a radionuclide includes a target chamber including a beam strike region for containing a liquid and a condenser region for containing a vapor. A particle beam source is operatively aligned with the beam strike region, and a lower liquid conduit communicates with the beam strike region. The condenser region is disposed above the beam strike region in fluid communication therewith for receiving heat energy from the beam strike region and transferring condensate to the beam strike region. The lower liquid conduit transfers liquid to and from the beam strike region. In operation, the target chamber acts as a thermosyphon that is self-regulating in response to heat energy deposited by the particle beam source. A portion of the liquid expands into the lower liquid conduit prior to boiling. After boiling begins, a vapor void is created above the liquid and an evaporation / condensation cycle is established, with additional liquid being displaced into the lower liquid conduit.
Owner:DUKE UNIV

Thermal management system and method for electronics system

A thermal energy management system is provided having a heat spreading device that is operatively engaged with at least one semiconductor chip and a thermal bus operatively engaged with the heat spreading device so as to transport thermal energy from the heat spreading device to a heat sink. The heat spreading device includes a heat pipe and the thermal bus includes a loop thermosyphon. A second thermal bus may be operatively engaged with the first-thermal bus so as to transport thermal energy from the first thermal bus to a heat sink. The second thermal bus may also include a loop thermosyphon. A method of managing thermal energy in an electronic system is also provided that includes spreading thermal energy generated by one or more devices over a surface that is relatively larger than the devices, thermally coupling an evaporator portion of a loop thermosyphon to the surface, and thermally coupling a condensing portion of the loop thermosyphon to a thermal energy sink, e.g., a second loop thermosyphon, convection fin, or cold plate.
Owner:THERMAL

Installation for very long term storage of heat generating products such as nuclear waste

A very long term storage installation for calorific products such as nuclear waste, comprises at least one closed cavity (10), in which at least one product confinement container is housed (14). To evacuate the heat released by the stored products, each container (14) is surrounded by a jacket (26) associated with a thermosiphon (24) whose cold source is formed of an air condenser provided above a slab (20) sealing the top part of the cavity. The jacket (26) is preferably interchangeable and tightly surrounds the container (14).
Owner:COMMISSARIAT A LENERGIE ATOMIQUE ET AUX ENERGIES ALTERNATIVES

High performance thermosiphon with internally enhanced condensation

A thermosiphon cooling assembly includes a refrigerant disposed in a lower portion of a housing for undergoing a liquid-to-vapor-to-condensate cycle. A mixing device is disposed within the lower portion of the housing for increasing the transfer of heat from the electronic device during the liquid-to-vapor-to-condensate cycle. The mixing device may include a vapor stirrer disposed above the liquid of the refrigerant and / or a liquid stirrer disposed in the liquid of the refrigerant for moving the liquid of the refrigerant over a boiler plate.
Owner:GULA CONSULTING LLC

Orientation insensitive thermosiphon capable of operation in upside down position

The invention provides a heat exchanger assembly having a housing which defines a boiling chamber extending along an axis between opposite ends. A plurality of first condensing tubes extend axially and downwardly in one direction at a first predetermined angle to and below the axis (A) from the housing and a plurality of second condensing tubes extend axially and upwardly in the opposite direction at the same predetermined angle to and above the axis (A) from the housing. The volume of refrigerant in the housing is greater than the volume of the second condensing tubes and the volume of the boiling chamber.
Owner:DELPHI TECH INC
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products