Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

2716 results about "Dry gas" patented technology

Drygas is an alcohol-based additive used in automobiles to prevent any water in the fuel from freezing, or to restore combustive power to gasoline spoiled by water. The name Drygas is actually a registered trademarked brand name, owned by Cristy Corporation. It is a liquid that is added into the fuel tank, that absorbs the water and keeps it in solution. Some brands contain methanol and some contain isopropyl alcohol.

Supersonic swirling separator 2 (Sustor2)

Sustor2 provides deep cooling of a gas flow, practically total condensation of a vapor, and fast and effective removal of the condensed liquid with a significantly reduced pressure losses compared with the prior art. Sustor2 performs the said operations by developing a strong swirling flow starting from its entrance, followed by spiral flow convergence in the inlet disc-like part, and then in a converging-diverging nozzle, by centrifugal removal of droplets, and removal of the liquid film through slits, then by spiral flow divergence and leaving the vortex chamber through tangential outlet.A gas enters from a pipeline (see the arrow in the A-A cross-section shown in FIG. 7) connected to Sustor2 by a flange and the inlet transition pipe ITP in FIG. 7, spirally converged in the disc-like part, marked by A-A in FIG. 6, enters the converging-diverging nozzle (FIG. 6). The flow is high-speed and swirling even at the near-entrance region of the vortex chamber. This swirl results in the centrifugal force that presses the through-flow to the sidewall. The flow accelerates near the nozzle throat up to a supersonic velocity with subsonic axial and supersonic swirl velocity components. This acceleration results in the gas temperature drop down to 200K and even less values. The reduced temperature causes rapid condensation of vapor into droplets. The centrifugal force pushes the droplets to the sidewall where they are removed through slits. Next the dried gas spirally diverges and leaves the vortex chamber through the tangential outlet. This results in the pressure recovery and transformation of the swirl kinetic energy into the longitudinal kinetic energy of the gas. Both the effects decrease pressure losses which is the Sustor2 advantage compared with the prior art.
Owner:BORISSOV ANATOLI +2

Catalytic conversion method for preparing propylene and aromatic hydrocarbons

A catalytic conversion method for preparing propylene and aromatic hydrocarbons comprises the following steps: hydrocarbon raw materials with different cracking performances are contacted with a catalytic cracking catalyst to carry out cracking reaction in a fluidized-bed reactor under the conditions that the temperature is 450-750 DEG C, the weight hourly space velocity is 0.1-800h<-1>, the reaction pressure is 0.10-1.0MPa, the weight ratio of the catalytic cracking catalyst to the raw materials is 1-150 and the weight ratio of water vapor to the raw materials is 0.05-1.0, the spent catalyst and reaction oil and gas are separated, the spent catalyst returns to the reactor after the regeneration, the separated reaction oil and gas are separated to obtain target products of low-carbon olefins, aromatic hydrocarbons and the raw materials for re-cracking, wherein the raw materials for re-cracking are re-cracked after hydrotreating. The method can product the propylene and other low-carbon olefins from the heavy raw materials to the maximum extent, wherein the yield of the propylene is more than 40 percent by weight; meanwhile, the method can co-produce toluene, xylene and other aromatic hydrocarbons, and the yield of the dry gas is unexpectedly reduced by more than 80 percent by weight.
Owner:CHINA PETROLEUM & CHEM CORP +1

Method for combination processing heavy oil by pyrolysis and gasification

The invention relates to a heavy oil processing method by combining thermal cracking and gasification. A raw material is conducted to a reactor from the bottom of a gas-solid separation region, is dispersed into oil drops through an atomizer; a lightweight component of the oil drop is volatilized to form oil gas in the falling process of the oil drops in a thermal cracking region; a heavy component is condensed to form coke, wherein the oil gas carries out thermal cracking reaction; coke particles drop into a gasification region and carry out gasification reaction at a temperature of between 800 and 1,600 DEG C to generate synthetic gas; one part of residual fine coke particles drop into an ash hopper to form clinker; the other part of the residual fine coke particles and the generated gas flow upwards together, are contacted with the descending liquid drops and carry out heat exchange; gas phase and coke in the gas-solid separation region of the upper part of the rector are separated; the separated fine coke particles re-drop into the thermal cracking region and the gasification region and continuously react; and the separated gas phase flows out of the rector, enters a subsequent separation system and is separated into synthetic gas, dry gas, liquid gas, gasoline, diesel, oil slurry and other products. The method has high gasification efficiency and reasonable utilization of heat energy and reduces energy consumption.
Owner:CHINA PETROLEUM & CHEM CORP +1

Method for preparing light fuel oil and propylene from poor-quality raw oil

A method for preparing light fuel oil and propylene from poor-quality raw oil comprises the following steps: the poor-quality raw oil sequentially enters a first reaction zone and a second reaction zone of a catalytic conversion reactor so as to be contacted with a catalytic conversion catalyst to generate first reaction and second reaction respectively, and after gas-solid separation is implemented to reaction products and spent catalyst, the spent catalyst returns to the reactor for recycling after steam stripping and burning; the reaction products are separated to obtain propylene, gasoline, heavy oil and other products, wherein the heavy oil is contacted with hydrogen and a hydrotreating catalyst for reaction, the obtained hydrogenated heavy oil circulates to the first reaction zone of the catalytic conversion reactor or/and other catalytic conversion devices for further reaction to obtain the target products of the propylene and the gasoline. The characteristic of the heavy oil obtained by hydrotreating after the mild catalytic conversion of the poor-quality raw oil is significantly improved, thereby significantly increasing light oil, reducing dry gas, reducing the yield of oil slurry and realizing the high-efficient utilization of petroleum resources.
Owner:CHINA PETROLEUM & CHEM CORP +1
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products