Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

219results about "Generator starter" patented technology

Low power consumption and rapid oscillation starting crystal oscillator module with programmable adjusting start-oscillation condition

The invention discloses a low power consumption and rapid oscillation starting crystal oscillator module with a transposable start oscillation condition, which consists of an inverting amplifier, an inverting reshaper chain, an automatic gain control loop (AGC), a feedback resistor, a power limitation resistor, and an external passive crystal oscillator and an external load capacitor. The inverting amplifier is provided with a transposable feedback resistor R1, and the transposable start oscillation condition of the crystal oscillator is realized; and the automatic gain control loop (AGC) is inserted between an input end and a bias end of the inverting amplifier, and the contradiction between the oscillation starting time and power consumption is solved. The invention also provides a highresistor realizing IC (integrated circuit) by adopting a transconductance amplifier of micro current source, and a transposable feedback resistor R1 for the oscillator amplifier branch circuit and a high resistor in a pi-shaped filter. The resistance value of the high resistance can be controlled by programming, the start oscillation condition of the oscillator can be adjusted through adjusting the feedback resistance R1, and reliable and quick start oscillation of the oscillator can be realized; and lower phase noise can be realized through adjusting the high resistor in the pi-shaped filter. The crystal oscillator circuit has the characteristics of low power consumption and rapid start oscillation, and can be used for the digital integrated circuit, such as a base band of various of satellite navigation allocation receptors, real time clocks (RTC).
Owner:杭州中科微电子有限公司

Regulated Capacitive Loading and Gain Control of a Crystal Oscillator During Startup and Steady State Operation

An oscillator circuit and system are provided having a peak detector that can determine a peak voltage value from the oscillator. The peak voltage value can then be compared against a predetermined voltage value by a controller coupled to the peak detector. The comparison value is then used to change a bias signal if the peak voltage value is dissimilar from the predetermined voltage value. A variable capacitor or varactor can be formed from a transistor and is coupled to the oscillator for receiving the bias signal upon a varactor bias node. The bias signal is used to regulate the capacitance within the varactor as applied to the oscillator nodes. Another controller can also be coupled to the peak detector to produce a second bias signal if the peak voltage is dissimilar from a second predetermined voltage value. The second bias signal can then be forwarded into an amplifier having a variable gain to regulate the gain applied to the oscillator. The combination of a varactor and variable gain amplifier regulate the negative resistance applied to the resonating circuit during startup and steady state operations to ensure a relatively fast startup, and to maintain optimal loading and accurate steady state amplitude after startup has completed.
Owner:MONTEREY RES LLC

Regulated capacitive loading and gain control of a crystal oscillator during startup and steady state operation

An oscillator circuit and system are provided having a peak detector that can determine a peak voltage value from the oscillator. The peak voltage value can then be compared against a predetermined voltage value by a controller coupled to the peak detector. The comparison value is then used to change a bias signal if the peak voltage value is dissimilar from the predetermined voltage value. A variable capacitor or varactor can be formed from a transistor and is coupled to the oscillator for receiving the bias signal upon a varactor bias node. The bias signal is used to regulate the capacitance within the varactor as applied to the oscillator nodes. Another controller can also be coupled to the peak detector to produce a second bias signal if the peak voltage is dissimilar from a second predetermined voltage value. The second bias signal can then be forwarded into an amplifier having a variable gain to regulate the gain applied to the oscillator. The combination of a varactor and variable gain amplifier regulate the negative resistance applied to the resonating circuit during startup and steady state operations to ensure a relatively fast startup, and to maintain optimal loading and accurate steady state amplitude after startup has completed.
Owner:MONTEREY RES LLC

Frequency calibration for a monolithic clock generator and timing/frequency reference

Exemplary embodiments of the invention provide a system, method and apparatus for frequency calibration of a free-running, harmonic oscillator. A reference oscillator provides a reference frequency. An exemplary system comprises the harmonic oscillator, a frequency divider, a comparator, and a reactance modulator. The oscillator comprises a plurality of switchable reactance modules and a coefficient register, and provides an oscillation signal having an oscillation frequency. The frequency divider provides an output frequency as a fraction of the oscillation frequency. The comparator compares the output and reference frequencies and provides a comparison signal when the output frequency is not substantially equal to the reference frequency. The reactance modulator determines and provides to the coefficient register a first plurality of coefficients to control switching of a first subset of the reactance modules to increase the reactance of the oscillator when the output frequency is greater than the reference frequency, and a second plurality of coefficients to control switching of a second subset of the reactance modules to decrease the reactance of the oscillator when the output frequency is less than the reference frequency.
Owner:INTEGRATED DEVICE TECH INC
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products