Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

134 results about "Multi echo" patented technology

Multi-echo magnetic resonance imaging method and system

Method, systems and arrangements are provided for creating a high-resolution magnetic resonance image (“MRI”) or obtaining other information of a target, such as a cardiac region of a patient. Radio-frequency (“RF”) pulses can be transmitted toward the target by, e.g., an RF transmitter of an MRI apparatus. In response, multiple echoes corresponding to the plurality of pulses may be received from the target. Data from each of the echoes can be assigned to a single line of k-space, and stored in memory of the apparatus. An image of the target, acceleration data and/or velocity data associated with a target can be generated as a function of the data. In one exemplary embodiment, the data from different echoes may be assigned to the same k-space line, and to different cardiac phases. In one further embodiment, parallel processing may be used to improve the resolution of the image acquired during a single breath-hold duration. In yet another embodiment, utilizing a segmented implementation, multiples lines of k-space are acquired for a given cardiac phase (or time stamp) per trigger signal. The present invention may be utilized for the heart or for any other anatomical organ or region of interest for the evaluation and study of flow dynamics with very high temporal resolution.
Owner:NEW YORK UNIV

Parallel MRI with bo distortion correction and multi-echo dixon water-fat separation using regularised sense reconstruction

The invention relates to a method of MR imaging of an object positioned in an examination volume of a MR device (1). The method comprises the steps of: acquiring reference MR signal data from the object (10); deriving a Bo map from the reference MR signal data; adapting sensitivity maps according to the B0 map, which sensitivity maps indicate spatial sensitivity profiles of one or more RF receiving coils (11, 12, 13), to correct for geometric distortions of the sensitivity maps; acquiring imaging MR signal data from the object (10) via the one or more receiving coils (11, 12, 13) with sub-sampling of k-space; and reconstructing a MR image from the imaging MR signal data, wherein sub-sampling artefacts are eliminated using the adapted sensitivity maps. In a preferred embodiment, the reference MR signal data are acquired using a multi-point Dixon technique, wherein a water map and a fat map are derived from the reference MR signal data. A water image and a fat image are reconstructed from the imaging MR signal data using separate water and fat sensitivity maps. The water and fat images are preferably reconstructed using regularised SENSE, wherein a water regularisation map and a fat regularisation map are derived from the multi-point Dixon reference MR signal data. Moreover, the invention relates to a MR device (1) for carrying out the method, and to a computer program to be run on a MR device (1).
Owner:KONINKLJIJKE PHILIPS NV

Steady-state procession gradient multi-echo water and grease separation imaging method

The invention discloses a steady-state procession gradient multi-echo water and grease separation imaging method. The steady-state procession gradient multi-echo water and grease separation imaging method comprises the following steps of on the basis of a steady-state procession imaging sequence for conventional scanning on a magnetic resonance imaging system, repeatedly exciting the imaging area by a radio frequency pulse at the interval of 10ms magnitude or smaller short cycle TR; setting a pulse flip angle into +alpha / 2 in a first sequence repetition cycle, and eliminating the sampling period; alternatively setting the pulse flip angle into +alpha and -alpha in the subsequent sequence repetition cycle; using the layer selection gradient, phase encoding gradient and frequency encoding gradient to perform three-dimensional encoding, wherein the sum of integral areas of gradients in each bearing is zero, and the proton magnetizing vector procession is approximate to the steady state; enabling the magnetizing vectors to form three or two gradient echoes under the action of three or two positive and negative alternating frequency encoding gradients in each TR period, wherein the integral area of gradients in the frequency encoding direction is zero; performing direct phase encoding on the three or two echoes according to echo peak interval and water and grease chemical displacement difference value.
Owner:谱影医疗科技(苏州)有限公司

Gradient-echo multi-echo water and fat separation method and magnetic resonance imaging system using method

The invention discloses a gradient-echo multi-echo water and fat separation method. The method includes the following steps of 1, using a three-dimensional gradient-echo N echo sequence for conductingimaging scanning on a magnetic resonance imaging region, collecting N pieces of echo data, and using a GRAPPA technology for accelerating data collection during collection, wherein N is greater thanor equal to 4; 2, using the GRAPPA technology for fitting and restoring to-be-collected phase encoding data of the N pieces of echo data within respective K spaces, and then conducting preliminary data processing to obtain complete image domain data of N echoes; 3, substituting the image domain data of the N echoes into a water and fat separation algorithm of a multi-peak water-fat model, introducing T2* variables, conducting iterative calculation, obtaining a T2* distribution map of an imaged object, and meanwhile obtaining water and fat images through calculation. According to the method, the T2* distribution can be accurately estimated, the signal attenuation between the echoes is effectively corrected, and phase changes caused by inhomogeneity of a magnetic field are reduced, so that results of the quantitative analysis images are more accurate and stable. A magnetic resonance imaging system using the method is also provided.
Owner:SUZHOU LONWIN MEDICAL SYST
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products