Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

174 results about "Pulse broadening" patented technology

PULSE BROADENING. Pulse broadening is a diffraction phenomenon but may be treated with stochastic ray tracing through extended media (Williamson 1972, 1975). It has been observed for many pulsars and used to study the distribution of ionized microturbulence in the Galaxy ([Cordes et al. 1991]).

Single-shot laser pulse detection device

ActiveCN104697649AAvoid the problem of high beam quality requirements and large aperture laserAvoid the problem of high quality requirements and large aperture laserInstrumentsTime delaysOptoelectronics
The invention provides a single-shot laser pulse detection device. The single-shot laser pulse detection device comprises a detection light path for transmitting baseband detection light pulses, a reference light path for transmitting frequency-doubled reference light pulses, a dual-pulse generator for obtaining dual-pulses having a first time delay and transmitted collinearly along the reference light path, a light pulse converter for converting the dual-pulses into a series of dual-pulse form sub-pulses mutually delayed in time, separated from each other in space and propagated in parallel basically, a pulse stretcher for translating each frequency component of the baseband detection light pulses so as to stretch in the time domain, a dispersor for separating the frequency components in the baseband detection light pulses in space, and a plane detector for generating third-order mutual-correlation pulse signals from the baseband detection light pulses and the sub-pulses from the dispersor. The single-shot laser pulse detection device is capable of accurately measuring the waveform of the femtosecond petawatt lase pulses and solving the problem of difficult diagnosis of ultrafast and ultrastrong pulses large in dynamic range.
Owner:INST OF PHYSICS - CHINESE ACAD OF SCI

Method for achieving terahertz wave center frequency continuous adjustability through pulse laser widening

The invention relates to a method for achieving terahertz wave center frequency continuous adjustability through pulse laser widening. Initial pulse lasers are divided into base frequency light and frequency multiplication light. Time domain widening is carried out on the base frequency light by adopting a pulse widening method to obtain the base frequency light after the time domain widening. After the frequency multiplication light passes through a reflective mirror and a light beam time delay system, space beam combination is carried out on the frequency multiplication light and the base frequency light after the time domain widening, light of different wavelengths in the frequency light and the base frequency light interacts to generate terahertz waves of different frequencies, and the terahertz waves are received by a terahertz wave detection system. The relative time coincident point between the two pulses generated by the base frequency light and the frequency multiplication light can be adjusted freely through the light beam time delay system. In the practical operating process, the relative time coincident point between the two pulses can be changed simply by controlling the light beam time delay system in a frequency multiplication light path, and thus the central frequency of the terahertz waves can be adjusted. The method is suitable for ultrashort pulse lasers of various wavelengths.
Owner:UNIV OF SHANGHAI FOR SCI & TECH +1

Single-fiber-type CARS excitation source device and realization method based on two-stage non-linear tuning

The invention discloses a single-fiber-type CARS excitation source device and realization method based on two-stage non-linear tuning. The device comprises a femtosecond fiber laser light source, an electric control light power attenuator, a first-stage tuner, a pulse broadening device, a second-stage tuner, a pump laser, a wavelength division multiplexer, a gain fiber, an optical filter and an output port. The femtosecond fiber laser light source outputs femtosecond pulses serving as Stokes optical pulses which enter the electric control light power attenuator; power control optical pulse wavelength tuning is realized in the first-stage tuner; the pulses are broadened to be femtosecond pulses through the pulse broadening device, and the femtosecond pulses then enter the gain fiber for amplification; signal optical pulses and idler frequency optical pulses are generated in the second-stage tuner, wherein the signal optical pulses serve as pump optical pulses of a CARS source; the optical filter filters the idler frequency optical pulses and the residual pump continuous light; and the rest optical pulses are output from the output port. Compared with the prior art, the device adopts a single-fiber light path structure and electric control tuning, and has the advantages of compact structure, anti-interference, high reliability and fast tuning speed; and CARS rapid imaging requirement is met.
Owner:TIANJIN UNIV

Interference velocity measurement system and method

The invention provides an interference velocity measurement system and method, and belongs to the technical field of laser interference velocity measurement. The interference velocity measurement system comprises a chirped pulse generation device, a first optical fiber dispersion element, a detection device and a data processing device, and is characterized in that a part of chirped pulses with preset pulse width, which are generated by the chirped pulse generation device, is transmitted to the first optical fiber dispersion element so as to form reference light, and another part of the chirped pulses is incident on a target to be measured; chirped pulses reflected by the target to be measured are transmitted to the first optical fiber dispersion element so as to form signal light, frequency domain interference signals, which are formed by interference generated by the reference light and the signal light, are subjected to pulse broadening processing of the first optical fiber dispersion element and get into the detection device, and the detection device converts the frequency domain interference signals into electric signals and sends the electric signals to the data processing device. The interference velocity measurement system provided by the embodiment of the invention effectively reduces bandwidth requirements for the detection device used for recording the interference signals, and a time resolution and velocity measurement upper limit of the system is improved.
Owner:INST OF FLUID PHYSICS CHINA ACAD OF ENG PHYSICS
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products