Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

573 results about "Femtosecond pulse" patented technology

Apparatus and method for the generation of high-power femtosecond pulses from a fiber amplifier

An apparatus generates femtosecond pulses from laser amplifiers by nonlinear frequency conversion. The implementation of nonlinear frequency-conversion allows the design of highly nonlinear amplifiers at a signal wavelength (SW), while still preserving a high-quality pulse at an approximately frequency-doubled wavelength (FDW). Nonlinear frequency-conversion also allows for limited wavelength tuning of the FDW. As an example, the output from a nonlinear fiber amplifier is frequency-converted. By controlling the polarization state in the nonlinear fiber amplifier and by operating in the soliton-supporting dispersion regime of the host glass, an efficient nonlinear pulse compression for the SW is obtained. The generated pulse width is optimized by utilizing soliton compression in the presence of the Raman-self-frequency shift in the nonlinear fiber amplifier at the SW. High-power pulses are obtained by employing fiber amplifiers with large core-diameters. The efficiency of the nonlinear fiber amplifier is optimized by using a double clad fiber (i.e., a fiber with a double-step refractive index profile) and by pumping light directly into the inner core of this fiber. Periodically poled LiNbO3 (PPLN) is used for efficient conversion of the SW to a FDW. The quality of the pulses at the FDW can further be improved by nonlinear frequency conversion of the compressed and Raman-shifted signal pulses at the SW. The use of Raman-shifting further increases the tuning range at the FDW. For applications in confocal microscopy, a special linear fiber amplifier is used.
Owner:IMRA AMERICA

Manufacture of silicon-based devices having disordered sulfur-doped surface layers

The present invention provides methods of fabricating a radiation-absorbing semiconductor wafer by irradiating at least one surface location of a silicon substrate, e.g., an n-doped crystalline silicon, by a plurality of temporally short laser pulses, e.g., femtosecond pulses, while exposing that location to a substance, e.g., SF6, having an electron-donating constituent so as to generate a substantially disordered surface layer (i.e., a microstructured layer) that incorporates a concentration of that electron-donating constituent, e.g., sulfur. The substrate is also annealed at an elevated temperature and for a duration selected to enhance the charge carrier density in the surface layer. For example, the substrate can be annealed at a temperature in a range of about 700 K to about 900 K.
Owner:PRESIDENT & FELLOWS OF HARVARD COLLEGE

Laser material micromachining with green femtosecond pulses

Various embodiments of a system described herein relate to micromachining materials using ultrashort visible laser pulses. The ultrashort laser pulses may be green and have a wavelength between about 500 to 550 nanometers in some embodiments. Additionally, the pulses may have a pulse duration of less than one picosecond in certain embodiments.
Owner:IMRA AMERICA

Stretching and compression of laser pulses by means of high efficiency volume diffractive gratings with variable periods in photo-thermo-refractive glass

High efficiency reflective volume Bragg gratings with chirped gratings recorded in photo-thermo-refractive glass having an absolute diffraction efficiency exceeding 95% in transmitting and reflecting modes are used to stretch and / or compress ultrashort laser pulses with high efficiency. Robustness, compactness, thermal and laser stability along with placement of multiple elements in the same space provides femtosecond laser system with high efficiency of stretching and re-compression of femtosecond pulses.
Owner:UNIV OF MICHIGAN THE +1

Method and system for spectral analysis of biological materials using stimulated cars

A CARS system and method for probing a Raman signature of a sample are described. A short femtosecond pulse from one or more lasers is split into two pulses, a stimulus pulse and a probe pulse, whereby the probe pulse is time-delayed with respect to the stimulus pulse. Both pulses can be phase- and polarization-modulated. The stimulus pulse excites a vibronic level in the sample and the probe pulse probes molecular Raman transitions in the sample. A difference in the signals with and without excitation can be used to determine on which molecule a bond is most likely located. This will allow an accurate and sensitive determination of the presence of specific molecules in the sample. The system and method can be used to analyze biological samples and to discriminate between molecules having overlapping Raman signatures.
Owner:CHROMAPLEX

Direct writing of optical devices in silica-based glass using femtosecond pulse lasers

The invention relates to methods of writing a light-guiding structure in a bulk glass substrate. The bulk glass substrate is preferably made from a soft silica-based material having an annealing point less than about 1380°K. A pulsed laser beam is focused within the substrate while the focus is translated relative to the substrate along a scan path at a scan speed effective to induce an increase in the refractive index of the material along the scan path. Substantially no laser-induced physical damage of the material is incurred along the scan path. Various optical devices can be made using this method.
Owner:CORNING INC

Method of marking ophhalmic lens by using laser radiation of femtosecond pulse width

A method of marking an ophthalmic lens, including a step of irradiating the ophthalmic lens formed of a resin material with a laser radiation of a femtosecond pulse width, such that the laser radiation is condensed at each of at least one predetermined spot within the ophthalmic lens, to form a whitened portion at the each of the at least one predetermined spot, for thereby providing the ophthalmic lens with a marking.
Owner:MENICON CO LTD

Manipulating the size of waveguides written into substrates using femtosecond laser pulses

InactiveUS20030099452A1Control over the refractive index profile of the waveguidesPhotomechanical apparatusCoupling light guidesFemto second laserLight beam
Waveguides produced in bulk glass using femtosecond pulsed lasers have diameters and refractive index profiles that are manipulated by additional motions or beams. For example, spot focuses of the femtosecond pulsed lasers trace overlapping or widened tracks by superimposing additional relative motions between the spot focuses and the bulk glass. Additional femtosecond pulsed beams can also be used to produced widened waveguides.
Owner:CORNING INC

Manufacture of silicon-based devices having disordered sulfur-doped surface layers

The present invention provides methods of fabricating a radiation-absorbing semiconductor wafer by irradiating at least one surface location of a silicon substrate, e.g., an n-doped crystalline silicon, by a plurality of temporally short laser pulses, e.g., femtosecond pulses, while exposing that location to a substance, e.g., SF6, having an electron-donating constituent so as to generate a substantially disordered surface layer (i.e., a microstructured layer) that incorporates a concentration of that electron-donating constituent, e.g., sulfur. The substrate is also annealed at an elevated temperature and for a duration selected to enhance the charge carrier density in the surface layer. For example, the substrate can be annealed at a temperature in a range of about 700 K to about 900 K.
Owner:PRESIDENT & FELLOWS OF HARVARD COLLEGE

Apparatus and method for measuring thermal conductivity

An apparatus and method for measuring and mapping thermal conductivity and thermal diffusivity at micrometer scale resolution. The apparatus and method utilize a mode-locked femtosecond pulsed laser in a pump-probe configuration to analyze time-domain thermoreflectance of a specimen to evaluate its thermal conductivity in micro-scale, so that, if desired, an image of thermal conductivity distribution of micro-scale regions may be obtained therefrom. A multi-layer, complete three-dimensional model that takes into account the entire three-dimensional heat flow in cylindrical coordinates enables micro-scale measurements to be made at an accuracy of about 90% of well-accepted values.
Owner:CAHILL DAVID GERARD

Nano-femtosecond dual-laser composite machining system

InactiveCN102059451AHigh precisionHigh nanosecond laser processing efficiencyLaser beam welding apparatusOptical elementsMicro nanoNuclear fusion
The invention relates to a nano-femtosecond dual-laser composite machining system. The system comprises a femtosecond laser, a nanosecond laser, a synchronous control circuit, an illuminating light source, a semi-transparent semi-reflecting mirror, a first dichroscope, a second dichroscope, a focusing lens and a charge coupled device (CCD) image detector, wherein the synchronous control circuit controls laser pulse output of the femtosecond laser and the nanosecond laser, and accurately adjusts relative time of nanosecond pulse and femtosecond pulse in the aspect of time to synchronize leading edges of the two pulses; the illuminating light source is positioned on one side of the semi-transparent semi-reflecting mirror, and the second dichroscope, the first dichroscope and the focusing lens are coaxially arranged on the other side of the semi-transparent semi-reflecting mirror in turn and are positioned on a straight line together with the illuminating light source; and the CCD image detector is positioned at the tail end of a reflecting light path of the semi-transparent semi-reflecting mirror. Through the system, the advantages of high femtosecond laser machining accuracy and high nanosecond laser machining efficiency are simultaneously integrated, and high-accuracy and high-efficiency micro-nano machining is realized; and the system can be widely applied to the fields such as high-accuracy machining of aviation and aerospace key parts, microstructure machining of a laser fusion ignition target, microstructure machining of a microsensor and the like.
Owner:BEIJING INSTITUTE OF TECHNOLOGYGY

Single optical frequency comb with high stability and high repetition frequency

The invention discloses manufacturing method and equipment of a single optical frequency comb with high stability and high repetition frequency. The method comprises the following specific steps of: outputting femtosecond pulses with high repetition frequency, wide spectrum and pulse width less than 7 fs by using a cycle-grade femtosecond titanium sapphire oscillator; carrying out beat measurement of the CEO of the femtosecond pulses by using a single nonlinear crystal; and simultaneously locking repetition frequency and CEO frequency to a stable external microwave reference source by using a circuit feedback technology. The equipment comprises the cycle-grade femtosecond titanium sapphire oscillator, the single nonlinear crystal beat measurement fceo device and a feedback circuit device controlled on the basis of the phase lock principle. The invention has the characteristics of compact equipment structure, long locking time, high usable output power, small phase noise and the like, and is mainly applied to the scientific researches of absolute optical frequency measurement, optical clock composition, atto-second production and the like.
Owner:INST OF PHYSICS - CHINESE ACAD OF SCI

Method and apparatus for repair of reflective photomasks

A method of selectively ablating an undesired material from a substrate includes providing a substrate with two regions; providing laser pulses; tuning a wavelength of the laser pulses to match a desired wavelength characteristic of a material and directing the tuned laser pulses onto the substrate; and controlling a pulse duration, wavelength, or both, of the laser pulses to ablate the undesired material without damaging the substrate or any adjacent material. In another embodiment, an apparatus for repairing a defect on a reflective photomask includes a femtosecond pulse width laser; a harmonic conversion cell; a filter for passing a selected EUV harmonic of the laser light; a lens arrangement configured to direct the selected EUV harmonic of the laser light onto the photomask; and a control unit connected to the laser to control an ablation of the defect on the reflective photomask.
Owner:GLOBALFOUNDRIES INC

Tattoo Removal and Other Dermatological Treatments using Multi-Photon Processing

A system and method for providing multi-photon processing treatment to a patient. A localized, multi-photon processing event is initiated within a vicinity of an unwanted pigment in order to remove the pigment. The multi-photon processing event requires a relatively low energy, but very intense, pulse of light. The low amount of energy per pulse allows ablation of the material to be highly localized, with negligible thermal damage to surrounding material. The multi-photon event may be initiated by focusing a suitable electromagnetic pulse, such as a 2 mJ laser pulse having a 100 to 300 femtoseconds pulse duration, into a focal volume small enough that the intensity exceeds 1011 Watts / cm2. A suitably configured Ti:Sapphire solid state laser may provide such pulses at 1-10 kHz. By repeating the multi-photon processing event along the location of a tattoo, the tattoo may be removed with no damage to the surrounding tissue.
Owner:SMITS ALEXANDER +1

Light frequency reference fiber femtosecond light frequency comb with tunable broadband repetition frequency

The invention relates to a light frequency reference fiber femtosecond light frequency comb with tunable broadband repetition frequency. The comb comprises a hybrid-locking-based erbium-doped fiber femtosecond laser device with tunable broadband repetition frequency, a reference laser locking system based on piezoelectric ceramic, a reference laser locking system based on a pumping current, a computer control system and a temperature control system, wherein the erbium-doped fiber femtosecond laser device is an annular chamber structure and is internally added with an electric control optical delay wire, and the repetition frequency of the laser device can realize continuous tunable broadband. For realizing light frequency reference femtosecond pulse output, rapid and slow piezoelectric ceramics and the pumping current are employed to cooperatively control beat frequency of the femtosecond laser device and two reference laser devices, the rapid piezoelectric ceramics fixing structure which is easy to use is designed, and a temperature control box is further designed to acquire stable beat frequency; the light frequency reference fiber femtosecond light frequency comb has advantages of light frequency reference output, tunable broadband repetition frequency, good stability and small size and further has application potential in the industrial environment.
Owner:TSINGHUA UNIV

Method for improving machining efficiency of micro-channel preparation through femtosecond laser

The invention relates to a method for improving the machining efficiency of micro-channel preparation through femtosecond laser, which belongs to the technical field of femtosecond laser application. The method includes the steps: firstly, generating the femtosecond pulse laser by the aid of a femtosecond laser system, adjusting energy by means of combination of a half wave plate and a polarizing film and modulating the femtosecond laser into femtosecond interval pulse sequence by the aid of a pulse shaper; secondly, reflecting the pulse sequence laser obtained in the first step to an objective lens for focusing through a reflector, realizing imaging by the aid of a CCD (charge coupled device) and a lighting source, moving a six-dimensional precision electric control platform and positioning a laser focus on the lower surface of a sample horizontally placed on the six-dimensional precision electric control platform; and thirdly, controlling the six-dimensional precision electric control platform to move along a laser propagation direction by the aid of a computer to machine a micro-channel on the sample. As the femtosecond laser is modulated into the femtosecond interval pulse sequence by the aid of the pulse shaper, the micro-channel preparation efficiency is improved. Moreover, introduction of a vibration source is omitted, so that controllability of precision machining cannot be reduced.
Owner:BEIJING INSTITUTE OF TECHNOLOGYGY

Coherent anti-stokes Raman scattering spectrum detection and microimaging system and method

InactiveCN106226284ARapid Simultaneous ImagingSimple structureRaman scatteringMicro imagingBandpass filtering
The invention relates to the field of optics, and provides a coherent anti-stokes Raman scattering spectrum detection and microimaging system which comprises a femtosecond pulse laser device, a beam divider, a pohotonic crystal fiber, a narrow bandpass filter, a delay unit, a beam combiner and a detector, wherein the beam divider is used for dividing femtosecond pulse laser into a first light beam and a second light beam; the pohotonic crystal fiber is used for pumping the first light beam to output super-continuum spectrum laser of which the pulse width is picosecond grade as Stokes light; the narrow bandpass filter is used for filtering the second light beam to increase the pulse width to be approximate to that of the super-continuum spectrum laser as pumping light and detection light; the delay unit is used for synchronizing the stokes light, the pumping light and the detection light; the beam combiner is used for combining the Stokes light, the pumping light and the detection light into a third light beam; the detector is used for detecting a correlated anti-Stokes Raman scattered spectrum. By adopting the coherent anti-stokes Raman scattering spectrum detection and microimaging system, simultaneous imaging of multiple chemical bands can be rapidly achieved, a super-continuum spectrum light source is lowly required, a complete CARS (Coherent Anti-Stokes Raman Scattering) spectrum can be obtained, the light beam utilization efficiency can be maximized, and the spectral resolution of CARS imaging can be improved.
Owner:SHENZHEN UNIV

Fiber amplifier for generating femtosecond pulses in single mode fiber

A source of high-power femtosecond optical pulses comprises a combination of a relatively short rare-earth doped fiber amplifier (e.g., less than five meters) with a first section of single mode fiber (or other dispersive element) disposed at the input of the amplifier to “pre-chirp” the output from a femtosecond pulse source, and a second section of single mode fiber fused to the output of the fiber amplifier to provide compression to the amplified pulses generated by the fiber amplifier. The rare-earth doped fiber amplifier is formed to comprise a normal dispersion, which when combined with self-phase modulation and distributed gain leads to a regime in amplifiers defined as “self-similar propagation”. In this regime of operation, the fiber amplifier generates high energy pulses with a parabolic shape (the parabolic shape defined as a function of time). These pulses also exhibit a strong linear chirp, where the linear nature of the chirp leads to efficient compression of the pulses.
Owner:FURAKAWA ELECTRIC NORTH AMERICA INC

Fiber assembly for all-fiber delivery of high energy femtosecond pulses

InactiveUS20130038923A1Improving dispersion managementLaser detailsFibre transmissionPhotonic bandgapHigh energy
Embodiments of the present invention are generally related to a fiber assembly, for example, in a chirped pulse amplification system, for all-fiber delivery of high energy femtosecond pulses. More specifically, embodiments of the present invention relate to a system and method for improving dispersion management when using hollow core photonic bandgap fibers for pulse compression. In one embodiment of the present invention, a fiber assembly comprises: an optical laser oscillator; a first fiber section for stretching the pulses from the laser oscillator, the first fiber section comprising a high order mode fiber; and a second fiber section for compressing the stretched pulses, connected to the first fiber section via a splice, the second fiber section comprising a hollow core photonic bandgap fiber; wherein the fiber assembly outputs a pulse compression at less than 200 fs.
Owner:OFS FITEL LLC

All-Normal-Dispersion Femtosecond Fiber Laser

A modelocked fiber laser is designed to have strong pulse-shaping based on spectral filtering of a highly-chirped pulse in the laser cavity. The laser generates femtosecond pulses without a dispersive delay line or anomalous dispersion in the cavity.
Owner:CORNELL CENT FOR TECH ENTERPRISE & COMMLIZATION CCTEC

Method for manufacturing artificial bionic compound eyes

The invention discloses a method for manufacturing artificial bionic compound eyes, comprising the steps of: firstly using femtosecond pulse bi-photon polymerization method to manufacture an inversioncurved surface micro lens mold; using ultraviolet nano impressing to manufacture into a three-dimensional curved surface micro lens template; then manufacturing an elastic mold on the three-dimensional curved surface micro lens template; sequentially accommodating photosensitive resin in the elastic mold, heating for baking into a photosensitive polymer mold with opposite polarity; and finally using the lens to focus ultraviolet lights and right irradiate to the photosensitive polymer mold placed on a substrate, manufacturing a light transmission channel by self-writing waveguide method, andmanufacturing into an artificial bionic compound eye. The invention overcomes limit of photoetching technology in aspect of three-dimensional micro-processing, improves processing precision of micro lens, can effectively reduce manufacture cost, enhance mass production capacity, and further promote application of artificial compound eyes in medical science, industry, military and other fields.
Owner:SUZHOU INST OF NANO TECH & NANO BIONICS CHINESE ACEDEMY OF SCI

Optical fiber fused taper-based intrinsic Fabry-Perot device and manufacturing method thereof

The invention provides an optical fiber fused taper-based intrinsic Fabry-Perot device and a manufacturing method thereof. The optical fiber fused taper-based intrinsic Fabry-Perot device comprises an optical fiber fused taper, wherein a first optical fiber internal reflection mirror and a second optical fiber internal reflection mirror are arranged in the optical fused fiber taper and radially change the reflection faces formed by reflection rates at the fiber core respectively along the interior of the optical fiber taper waist through femtosecond pulse laser. The diameter of the optical fiber fused taper is 10 to 50 microns; the distance between the first and second optical fiber internal reflection mirrors is 50 to 6000 microns. The device combines the high sensitivity characteristicscaused by a strong evanescent field of the optical fiber fused taper and easy detection characteristics of resonance peak shift for sensing of a Fabry-Perot cavity and enhances the sensitivity, response speed and reliability of an optical fiber sensor. The manufacturing method of the device is to etch the Fabry-Perot cavity by femtosecond pulse laser after adopting optical fiber biconical taper. Moreover, the device provided by the invention is simple and stable in structure, low in cost and high in repeatability and has the advantages of easy for batch processing of the device and the like. The device and method provided by the invention have broad application prospect in miniaturized and high-sensitive sensing areas.
Owner:SHANGHAI UNIV

Stretching and compression of laser pulses by means of high efficiency volume diffractive gratings with variable periods in photo-thermo-refractive glass

High efficiency reflective volume Bragg gratings with chirped gratings recorded in photo-thermo-refractive glass having an absolute diffraction efficiency exceeding 95% in transmitting and reflecting modes are used to stretch and / or compress ultrashort laser pulses with high efficiency. Robustness, compactness, thermal and laser stability along with placement of multiple elements in the same space provides femtosecond laser system with high efficiency of stretching and re-compression of femtosecond pulses.
Owner:RGT UNIV OF MICHIGAN +1

Method and system for spectral analysis of biological materials using stimulated cars

A CARS system and method for probing a Raman signature of a sample are described. A short femtosecond pulse from one or more lasers is split into two pulses, a stimulus pulse and a probe pulse, whereby the probe pulse is time-delayed with respect to the stimulus pulse. Both pulses can be phase- and polarization-modulated. The stimulus pulse excites a vibronic level in the sample and the probe pulse probes molecular Raman transitions in the sample. A difference in the signals with and without excitation can be used to determine on which molecule a bond is most likely located. This will allow an accurate and sensitive determination of the presence of specific molecules in the sample. The system and method can be used to analyze biological samples and to discriminate between molecules having overlapping Raman signatures.
Owner:CHROMAPLEX

Hydraulic structure seepage property distributed optical fiber sensing integrated system and method

The invention discloses a hydraulic structure seepage property distributed optical fiber sensing integrated system and a method. The system comprises a special optical fiber for seepage measurement, an optical fiber calibration device, an optical fiber laying device, and a seepage property identification device. After the optical fiber calibration device calibrates the special optical fiber for seepage measurement on site, the special optical fiber for seepage measurement is laid and tested with the aid of the optical fiber laying device, and the special optical fiber for seepage measurement is connected to the seepage property identification device for information collection, processing and analysis after successful test. By adopting the system and the method, a long optical fiber can be calibrated efficiently, and the bending curvature of the long optical fiber can be controlled and measured reliably. By combining the special optical fiber for seepage measurement with a self-controlled heat source and a seepage property identification technology based on femtosecond pulse, the seepage property of a hydraulic structure can be sensed with high precision and high spatial resolution, at high sensing speed and at long distance.
Owner:HOHAI UNIV

Optical frequency up-conversion of femtosecond pulses into targeted single bands in the visible and ultraviolet

An apparatus and methods for generating a substantially supercontinuum-free widely-tunable multimilliwatt source of radiation characterized by a narrowband line profile. The apparatus and methods employ nonlinear optical mechanisms in a nonlinear photonic crystal fiber (PCF) by detuning the wavelength of a pump laser to a significant extent relative to the zero-dispersion wavelength (ZDW) of the PCF. Optical phenomena employed for the selective up-conversion in the PCF include, but are not limited to, four-wave mixing and Cherenkov radiation. Tunability is achieved by varying pump wavelength and power and by substituting different types of PCFs characterized by specified dispersion properties.
Owner:THE BOARD OF TRUSTEES OF THE UNIV OF ILLINOIS

Direct writing of optical devices in silica-based glass using femtosecond pulse lasers

The invention relates to methods of writing a light-guiding structure in a bulk glass substrate. The bulk glass substrate is preferably made from a soft silica-based material having an annealing point less than about 1380° K. A pulsed laser beam is focused within the substrate while the focus is translated relative to the substrate along a scan path at a scan speed effective to induce an increase in the refractive index of the material along the scan path. Substantially no laser-induced physical damage of the material is incurred along the scan path. Various optical devices can be made using this method.
Owner:CORNING INC

Method of direct Coulomb explosion in laser ablation of semiconductor structures

A new technique and Method of Direct Coulomb Explosion in Laser Ablation of Semiconductor Structures in semiconductor materials is disclosed. The Method of Direct Coulomb Explosion in Laser Ablation of Semiconductor Structures provides activation of the “Coulomb explosion” mechanism in a manner which does not invoke or require the conventional avalanche photoionization mechanism, but rather utilizes direct interband absorption to generate the Coulomb explosion threshold charge densities. This approach minimizes the laser intensity necessary for material removal and provides optimal machining quality. The technique generally comprises use of a femtosecond pulsed laser to rapidly evacuate electrons from a near surface region of a semiconductor or dielectric structure, and wherein the wavelength of the laser beam is chosen such that interband optical absorption dominates the carrier production throughout the laser pulse. The further application of a strong electric field to the semiconductor or dielectric structure provides enhancement of the absorption coefficient through a field induced redshift of the optical absorption. The use of this electric field controlled optical absorption is available in all semiconductor materials and allows precise control of the ablation rate. When used in conjunction with nanoscale semiconductor or dielectric structures, the application of a strong electric field provides for laser ablation on sub-micron lateral scales.
Owner:OPTICAL ANALYTICS

Amplifier Chain for Generating Ultrashort Different Width Light Pulses

The present invention relates to an amplifier chain for generating ultrashort light pulses of different pulse durations and applies in particular to amplifier chains suitable for amplifying picosecond and femtosecond pulses. The amplifier chain comprising a stretcher with at least one entry dispersive element of the grating type and intended to temporally stretch an incident pulse, an amplifying medium designed to amplify said stretched pulse, a compressor with at least one entry dispersive element substantially identical to that of the stretcher, designed to temporally compress said amplified pulse. According to the invention, the stretcher and the compressor include means for moving the dispersive elements between first and second positions, in such a way that the angle of incidence in a first position is equal to the angle of diffraction in the second position, and vice versa, allowing two degrees of stretch of the chain to be defined, each adapted to the amplification of pulses of different durations.
Owner:THALES SA
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products