Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

67 results about "Scintillating fiber" patented technology

Optical fiber coupling organic scintillating fiber pulse neutron probe

InactiveCN101556331AHigh n/γ sensitivity ratioCapable of resisting gamma interferenceMeasurement with scintillation detectorsFiberExit surface
The invention relates to an optical fiber coupling organic scintillating fiber pulse neutron probe comprising a probe and a photoelectric converter, wherein the probe comprises a metal shell and a radiation sensitive unit positioned at a central position on the shell, the shell is provided with a probe incident window and a probe exit window along the beam incident direction, and the probe also comprises a light guide bundle used for connecting the probe and the photoelectric converter; the radiation sensitive unit is an organic scintillating fiber linear array formed by a single layer of organic scintillating fibers which are parallelly arranged, and the organic scintillating fiber linear array is arranged perpendicularly to the beam incident direction and fixed on the inner side wall of the metal shell; the light guide bundle is formed by a plurality of silica optical fibers which are bundled cables, and the silica optical fibers are coupled with the organic scintillating fibers one to one; and a light exit surface at the tail end of the light guide bundle is aligned with an incident window of the photoelectric converter. The optical fiber coupling organic scintillating fiber pulse neutron probe solves the technical problems that the existing pulse neutron probe cannot satisfy the requirements of fast response time, high n/gamma sensitivity ratio, strong anti-electromagnetic interference capability and low shield simultaneously, and has high n/gamma sensitivity ratio and strong anti-gamma interference capability.
Owner:NORTHWEST INST OF NUCLEAR TECH

Novel signal-ion micro-beam detector based on plastic scintillating fiber

InactiveCN101661109ASolve the problem of being unable to detect real-time changes in sample fluorescence signalsImprove experimental efficiencyMicrobiological testing/measurementX/gamma/cosmic radiation measurmentPhotomultiplierOpto electronic
The invention relates to a novel single-ion microbeam detector based on a plastic scintillating fiber, comprising a microscope, wherein a single-ion microbeam is arranged below the objective lens of the microscope; an exit port of the single-ion microbeam rightly faces the objective lens of the microscope; and a sample to be measured is arranged between the objective lens of the microscope and theexit port of the single-ion microbeam. The novel single-ion microbeam detector based on the plastic scintillating fiber also comprises a plastic scintillating fiber which is squashed and a photomultiplier, wherein the squashed part of the plastic scintillating fiber is located between the exit port of the single-ion microbeam and the sample to be measured; two ends of the plastic scintillating fiber are respectively coupled with the photomultiplier; the single-ion microbeam sends out an ion to the sample to be measured when the ion passes through the plastic scintillating fiber, the plastic scintillating fiber generates a photon and transmits the photon to the photomultiplier which converts an optical signal into an electrical signal, and then the ion passes through the plastic scintillating fiber and bombards the sample.
Owner:INST OF PLASMA PHYSICS CHINESE ACAD OF SCI
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products