Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

429 results about "Radiation measuring device" patented technology

Jump to navigation Jump to search. A radiation dosimeter is a device that measures exposure to ionizing radiation. It has two main uses: for human radiation protection and for measurement of dose in both medical and industrial processes.

Safety indicator and method

A safety indicator monitors environment conditions detrimental to humans e.g., hazardous gases, air pollutants, low oxygen, radiation levels of EMF or RF and microwave, temperature, humidity and air pressure retaining a three month history to upload to a PC via infra red data interface or phone link. Contaminants are analyzed and compared to stored profiles to determine its classification and notify user of an adversity by stored voice messages from, via alarm tones and associated flashing LED, via vibrator for silent operation or via LCD. Environmental radiation sources are monitored and auto-scaled. Instantaneous radiation exposure level and exposure duration data are stored for later readout as a detector and dosimeter. Scans for EMF allow detection with auto scaling of radiation levels and exposure durations are stored for subsequent readout. Electronic bugs can be found with a high sensitivity EMF range setting. Ambient temperature measurements or humidity and barometric pressure can be made over time to predict weather changes. A PCS RF link provides wireless remote communications in a first responder military use by upload of alarm conditions, field measurements and with download of command instructions. The link supports reception of telemetry data for real time remote monitoring of personnel via the wrist band for blood pressure, temperature, pulse rate and blood oxygen levels are transmitted. Commercial uses include remote environmental data collection and employee assignment tasking. GPS locates personnel and reporting coordinates associated with alarm occurrences and associated environmental measurements.
Owner:NTCG

Space charge dosimeters for extremely low power measurements of radiation in shipping containers

Methods and apparatus are described for space charge dosimeters for extremely low power measurements of radiation in shipping containers. A method includes insitu polling a suite of passive integrating ionizing radiation sensors including reading-out dosimetric data from a first passive integrating ionizing radiation sensor and a second passive integrating ionizing radiation sensor, where the first passive integrating ionizing radiation sensor and the second passive integrating ionizing radiation sensor remain situated where the dosimetric data was integrated while reading-out. Another method includes arranging a plurality of ionizing radiation sensors in a spatially dispersed array; determining a relative position of each of the plurality of ionizing radiation sensors to define a volume of interest; collecting ionizing radiation data from at least a subset of the plurality of ionizing radiation sensors; and triggering an alarm condition when a dose level of an ionizing radiation source is calculated to exceed a threshold.
Owner:UT BATTELLE LLC

Nanodosimeter based on single ion detection

A nanodosimeter device (15) for detecting positive ions induced in a sensitive gas volume by a radiation field of primary particle, comprising an ionization chamber (10) for holding the sensitive gas volume to be irradiated by the radiation field of primary particles; an ion counter system connected to the ionization chamber (10) for detecting the positive ions which pass through the aperture opening and arrive at the ion counter (12) at an arrival time; a particle tracking system for position-sensitive detection of the primary particles passing through the sensitive gas volume; and a data acquisition system capable of coordinating the readout of all data signals and of performing data analysis correlating the arrival time of the positive ions detected by the ion counter system relative to the position sensitive data of primary particles detected by the particle tracking system. The invention further includes the use of the nanodosimeter for method of calibrating radiation exposure with damage to a nucleic acid within a sample. A volume of tissue-equivalent gas is radiated with a radiation field to induce positive ions. The resulting positive ions are measured and compared with a determination of presence or extent of damage resulting from irradiating a nucleic acid sample with an equivalent dose of radiation.
Owner:LOMA LINDA UNIVERSITY +1

Safety indicator and method

A safety indicator monitors environment conditions detrimental to humans e.g., hazardous gases, air pollutants, low oxygen, radiation levels of EMF or RF and microwave, temperature, humidity and air pressure retaining a three month history to upload to a PC via infra red data interface or phone link. Contaminants are analyzed and compared to stored profiles to determine its classification and notify user of an adversity by stored voice messages from, via alarm tones and associated flashing LED, via vibrator for silent operation or via LCD. Environmental radiation sources are monitored and auto-scaled. Instantaneous radiation exposure level and exposure duration data are stored for later readout as a detector and dosimeter. Scans for EMF allow detection with auto scaling of radiation levels and exposure durations are stored for subsequent readout. Electronic bugs can be found with a high sensitivity EMF range setting. Ambient temperature measurements or humidity and barometric pressure can be made over time to predict weather changes. A PCS RF link provides wireless remote communications in a first responder military use by upload of alarm conditions, field measurements and with download of command instructions. The link supports reception of telemetry data for real time remote monitoring of personnel via the wrist band for blood pressure, temperature, pulse rate and blood oxygen levels are transmitted. Commercial uses include remote environmental data collection and employee assignment tasking. GPS locates personnel and reporting coordinates associated with alarm occurrences and associated environmental measurements.
Owner:NTCG

Evaluation of irradiated foods and other items with telemetric dosimeters and associated methods

Methods for quantifying the irradiation dose received by an item or items, such as food items and medical items, undergoing irradiation-based sterilization, includes the steps of monitoring a selected electronic parameter associated with an economic single use sensor positioned adjacent the item or items and telemetrically relaying data associated with the monitored electronic parameter to a computer. The computer includes a computer program which is configured to determine the radiation dose received by the item or items by correlating the value of the monitored electronic parameter to a corresponding amount of radiation associated with the value. Related sensors and systems are also described.
Owner:VTQ IP HLDG

Wireless, motion and position-sensing, integrating radiation sensor for occupational and environmental dosimetry

Described is a radiation dosimeter including multiple sensor devices (including one or more passive integrating electronic radiation sensor, a MEMS accelerometers, a wireless transmitters and, optionally, a GPS, a thermistor, or other chemical, biological or EMF sensors) and a computer program for the simultaneous detection and wireless transmission of ionizing radiation, motion and global position for use in occupational and environmental dosimetry. The described dosimeter utilizes new processes and algorithms to create a self-contained, passive, integrating dosimeter. Furthermore, disclosed embodiments provide the use of MEMS and nanotechnology manufacturing techniques to encapsulate individual ionizing radiation sensor elements within a radiation attenuating material that provides a “filtration bubble” around the sensor element, the use of multiple attenuating materials (filters) around multiple sensor elements, and the use of a software algorithm to discriminate between different types of ionizing radiation and different radiation energy.
Owner:LANDAUER INC

General purpose, high accuracy dosimeter reader

A general purpose high accuracy dosimeter reader, 80, for determination of a treatment condition, based on comparison of an image of treated dosimeter, 111, with a series of images of pre-treated dosimeter, 114, is disclosed. A dosimeter undergoes noticeable changes, such as a color change upon treatment with certain materials, such as toxic gases and processes, such as ionizing radiation and sterilization is pre-treated. The dosimeter is imaged with an imaging device, 115, such as charge-coupled device camera and images of the dosimeter or the changes, e.g., color change, are stored in an information storage device, 118. In order to determine the treatment condition, the treatment dosimeter is imaged and the image is compared with the series of pre-treated images of the dosimeter using software. The closest match of the treated dosimeter with the pre-treated and pre-imaged dosimeter would indicate the treatment conditions. The process and device can be used for almost any indicating device, process and treatment.
Owner:JP LAB INC +1

Headset with fit detection system

Headphones with acoustically resistant ear cups, an external noise sensor mounted thereto that monitors ambient noise, and internal sensors to monitor noise within each ear cup are disclosed. A processing system monitors the external and interior sound detected by the sensors and compares the level inside the ear cups with the detected level of ambient noise. It activates a transducer such as a vibrator, buzzer, or light as needed to indicate when the level within the ear cups has exceeded the predetermined criteria thereby indicating improper fit of the headphones. Alternative embodiments include wirelessly communicating the collected data to an auxiliary computer for remote data collection, storage and monitoring. The headphones may also provide a sound dosimeter; bandpass filtering; automatic noise reduction with feed forward and / or feed back; wireless voice and data communication; and a voice activated switch, all using elements of the headphone fit detection circuitry.
Owner:SONETICS HLDG

Orthotic or prosthetic devices with adjustable force dosimeter and sensor

InactiveUS20060200057A1Increase amount can be appliedReduce application volumeRestraining devicesFeet bandagesDosimeterKnee Joint
An orthotic knee brace for treating unicompartmental osteoarthritis in a knee joint is described. The brace includes a fabric sleeve mounting and a bracing member removably positioned in the sleeve to provide a therapeutic force on the joint. The force is applied by a force dosimeter assembly that draws an incrementally adjustable amount of force on cables connected to the bracing member. The amount of force applied by the force dosimeter is detected by a force sensor, and is indicated by a force indicator, each also removably attachable on the fabric sleeve mounting. The foregoing features, while exemplified in the context of a knee brace, are adaptable to any orthotic or prosthetic device where it is desired to apply an adjustable amount of force to a point on the device to provide a therapeutic benefit, and to provide a real-time indication to the user of the amount of force being applied.
Owner:BELLACURE

Citizen's dosimeter

The present invention relates to a citizen's dosimeter. More specifically, the invention relates to a small, portable, personal dosimetry device designed to be used in the wake of a event involving a Radiological Dispersal Device (RDD), Improvised Nuclear Device (IND), or other event resulting in the contamination of large area with radioactive material or where on site personal dosimetry is required. The card sized dosimeter generally comprises: a lower card layer, the lower card body having an inner and outer side; a upper card layer, the layer card having an inner and outer side; an optically stimulated luminescent material (OSLM), wherein the OSLM is sandwiched between the inner side of the lower card layer and the inner side of the upper card layer during dosimeter radiation recording, a shutter means for exposing at least one side of the OSLM for dosimeter readout; and an energy compensation filter attached to the outer sides of the lower and upper card layers.
Owner:THE UNITED STATES AS REPRESENTED BY THE DEPARTMENT OF ENERGY

Disposable single-use external dosimeters for use in radiation therapies

Methods, systems, devices, and computer program products include positioning disposable single-use radiation sensor patches that have adhesive means onto the skin of a patient to evaluate the radiation dose delivered during a treatment session. The sensor patches are configured to be minimally obtrusive and operate without the use of externally extending power chords or lead wires.
Owner:VTQ IP HLDG

Apparatus and method for determining radiation dose

A radiation dosimeter system and method for estimating a deposited radiation dose to an object involves locating at least one radiation dosimeter at the object. The radiation dosimeter includes a radiation sensitive medium having an optical property that changes due to the deposited radiation dose. An optical interrogation signal is provided to the radiation dosimeter via an enclosed optical path for interacting with the radiation sensitive medium. During irradiation, the optical interrogation signal is transformed into an optical information signal that encodes an ionizing radiation induced change in the optical property of the radiation sensitive medium. The radiation dosimeter system then processes the optical information signal for estimating the deposited radiation dose.
Owner:UNIV HEALTH NETWORK

Three-dimensional dosimeter for penetrating radiation and method of use

This invention relates to a method of forming a three-dimensional (3D) dosimetric map in a solid translucent or transparent polymer and to an article of manufacture comprising a polymer formulated to capture data imparted by incident penetrating radiation. The present invention provides a method of preparation of a solid translucent or transparent polymer matrix capable of detecting and displaying a dose or doses of penetrating radiation by forming within the polymeric matrix a 3D dosimetric map which is measurable and quantifiable by various known procedures. The dosimetric map is representative of the 3D distribution of the dose or doses of the penetrating radiation to which the polymer had been exposed and can be quantified at high spatial resolution, thereby providing an accurate, stable, storable record in three dimensions of the radiation exposure or dosing event(s).
Owner:HEURIS PHARMA

Real time radiation monitoring system and portable telepositional radiation dosimeter

The present invention provides a system, device, computer program product and article for a telepositional dosimeter (TPD) and a radiation measurement system (RMS) having one or more TPDs capable of communicating environmental radiation measurements to a network, database or other data management technology. The present invention combines radiation measurement technology, wireless network and mobile communication technology, software, and related technologies to enable applications in various environments including the areas of environmental protection, homeland security, anti-terrorism, nuclear safety, radiation material handling and safety, and emergency response.
Owner:ZHANG CHONG +1

Radiation dosimeter with localization means and methods

A apparatus for accurately measuring radiation beams during treatment which comprises a dosimeter which is used to measure the radiation; an optical marker which is used to determine the patient position; and said dosimeter and said optical marker are connected to one another used to provide and display simultaneously a radiation dose reading and a measurement of the patient's movements during treatment.
Owner:HALLIL ABDELBASSET

A self indicating multi-sensor radiation dosimeter

Described is a multi-sensor radiation dosimeter system with (1) a self-indicating, instant radiation sensor and (2) a conventional radiation sensor for monitoring high energy radiations, such as X-ray, electrons and neutrons. Conventional radiation sensors, such as X-ray film, TLD (Thermoluminescence Dosimeters), RLG (Radioluminescence Glass) and OSL (Optically Simulated Luminescence), are highly sensitive but are not instant. In the event of a dirty bomb, nuclear detonation or a radiological accident, one needs to know the exposure instantly so proper precautions can be taken and medical treatment, if required, can be given to the victim. If a self-indicating instant sensor is one of the sensors, one would know the dose instantly, and dose can be determined with higher accuracy than by the traditional methods. This type of device offers the best of both technologies.
Owner:JP LAB INC

Photomultiplier tube gain stabilization for radiation dosimetry system

Methods and means for measuring and adjusting the gain of a photomultiplier tube (PMT), or other photo-detector with electron multiplication gain, for the purpose of achieving accurate light measurement, such as in a luminescent radiation dosimeter reader. With a PMT illuminated by a light emitting diode or other light source, the PMT output signal is measured in two modes, signal integration and photon pulse counting. The measured PMT gain is calculated as the ratio of the integrated signal to the photon pulse count. The PMT high voltage may be adjusted to cause the measured PMT gain to correspond to an established calibration gain value, or the data from the PMT may be adjusted to compensate the deviation of the measured PMT gain from the calibration gain value. The light source may be a controllable light source that can be adjusted to provide a specific photon count rate output as measured by the PMT. This invention provides for maintaining light measurement calibration without requiring temperature stabilization or a fixed light source.
Owner:TETZLAFF WOLFGANG

Fibre Optic Dosimeter

InactiveUS20090014665A1Reduces and prevents entryReduce and prevent detectionX-ray spectral distribution measurementElectrical apparatusDosimeterLight pipe
A dosimeter (100) for radiation fields is described. The dosimeter includes a scintillator (1) a light pipe (2) having a first end in optical communication with the scintillator (1) and a light detector (6). The light pipe (2) may have a hollow core (3) with a light reflective material about the periphery of the hollow core (3). The dosimeter (100) may further include a light source (61) that generates light for use as a calibrating signal for a measurement signal and / or for use to check the light pipe (2).
Owner:THE UNIV OF SYDNEY

Dosimeter having an array of sensors for measuring ionizing radiation, and dosimetry system and method using such a dosimeter

In a dosimeter for measuring levels of ionizing radiation, for example during radiotherapy, a plurality of radiation sensors, such as insulated gate field effect transistors (IGFETs), are spaced apart at predetermined intervals on a support, for example a flexible printed circuit strip, and connected to a connector which can be coupled to a reader for reading the sensors. The sensors may each be connected to a reference device, which may also be an insulated gate field effect transistor, and the absorbed radiation dose may be determined by measuring, before and after the irradiation, the difference between the threshold voltages of the individual sensors and the threshold voltage reference device. Corresponding terminals of the sensors may be connected to the connector by a single conductor, thereby reducing the number of conductors required.
Owner:BEST THERATRONICS +1

System and method for wireless, motion and position-sensing, integrating radiation sensor for occupational and environmental dosimetry

Described is a radiation dose calculation algorithm based upon the output of a radiation dosimeter including multiple sensor devices (including one or more passive integrating radiation sensors and optionally, a MEMS accelerometers, a wireless transmitters a GPS, a thermistor, or other chemical, biological or EMF sensors). The algorithm is used to convert the sensor output into dose values used to assess the exposure of personnel to ionizing radiation. Sensor output patterns are matched to stored empirically generated sensor outputs thru weighting and optimization calculation processes to determine personnel doses. Algorithm outputs can include personal dose equivalents, radiation types, radiation energy and radiation source identification. Dose calculations can be optimized for specific applications, and matched to different sets of measured data without changing the underlining software calculation programs.
Owner:LANDAUER INC

Low cost digital pocket dosemeter

The invention relates to a pocket type digital radiation dosemeter comprising of a detector, which converts the ionisation in the detector caused by the incidence of ionising radiation of certain energy range into electrical impulses, a low power pulse amplifier, that amplifies the electrical pulses from the detector to detectable amplitudes, a discriminator circuit, that is used to reject pulses of origin other than those caused by the ionising radiation, a programmable divider circuit for calibrating the dosemeter, an electronic counting circuit and a six digit LCD display. The sensitivity of the dosemeter is 1 count per μSv (micro Sievert) and the accuracy is within ±15% from 60 keV to 1.25 Mev of X or Gamma radiation. A metallic energy compensation filter and a discriminator threshold modulation circuit are used to provide uniform response within ±15% from 60 KeV to 1.25 MeV. The Digital display indicates at any instant the total X or Gamma radiation dose, in μSv, received by the dosemeter since the time at which the dosemeter was switched on. The dosemeter is designed for very low power consumption and is powered by two coin type Li batteries (Type CR2320). It is capable of over 500 hours of continuous operation before having to replace the batteries. A blinking LED indicates low battery condition when 8 hours of battery life is still left. The entire circuitry and the battery holder are mounted on a single printed circuit board. Surface mount components are used to make the unit compact. The dosemeter is compact (110 mm L×30 mm W×14 mm H excluding Clip) and light in weight (60 gm).
Owner:DEPT OF ATOMIC ENERGY

Evaluation of irradiated foods and other items with telemetric dosimeters and associated methods

Methods for quantifying the irradiation dose received by an item or items, such as food items and medical items, undergoing irradiation-based sterilization, includes the steps of monitoring a selected electronic parameter associated with an economic single use sensor positioned adjacent the item or items and telemetrically relaying data associated with the monitored electronic parameter to a computer. The computer includes a computer program which is configured to determine the radiation dose received by the item or items by correlating the value of the monitored electronic parameter to a corresponding amount of radiation associated with the value. Related sensors and systems are also described.
Owner:VTQ IP HLDG

Wireless Headset Noise Exposure Dosimeter

Systems and methods for measuring noise exposure associated with use of a wireless headset are presented. In one example, a transition from a wireless headset standby mode operation to a wireless headset active mode operation is identified. A stored noise dose measurement at the wireless headset is recalled, and a current noise dose measurement is calculated at the wireless headset for a duration of the active mode operation. A transition from the wireless headset active mode operation to the wireless headset standby mode operation is identified, and an updated noise dose measurement is recorded at the wireless headset.
Owner:PLANTRONICS

Radiation dosimetry apparatus and method, and dosimeter for use therein

In order to overcome or at least mitigate difficulties in compensating for movement of the target, for example a tumour during radiotherapy, a dosimetry apparatus and method embodying the present invention employ a dosimeter having at least one radiation detector and at least one magnetic position sensor located a predetermined distance apart. Radiation level readings from the radiation detector and position readings from the position sensor are monitored and correlated, conveniently according to time, to obtain the position of the radiation detector when a particular radiation level was detected.
Owner:BEST THERATRONICS

Physical agents directive dosimeter system

A portable physical agents directive (PAD) dosimeter system may be provided. The portable PAD dosimeter system may include a housing and at least one accelerometer configured to generate electrical signals corresponding to a vibration exposure of an operator of a work machine. The portable PAD dosimeter system may also include a controller disposed in the housing configured to process the electrical signals and to determine whether the vibration exposure is above a predetermined threshold.
Owner:CATERPILLAR INC

Self indicating radiation alert dosimeter

Described as a self-indicating instant radiation dosimeter (1001) for monitoring high energy radiations, such as X-ray. The dosimeter contains a radiation sensitive, color changing, indicating composition (10), e.g., a diacetylene (R—C≡C—C≡C—R′, where R and R′ are substituents groups) or a radiochromic dye, a polymeric binder (20) and optionally a shelf life extender (50) or an activator (40). The radiation sensitive composition (10) changes color instantly when exposed to high energy radiation. The dose is estimated by comparing the color with a color reference chart or more accurately with a spectrophotometer or an optical densitometer. The radiation sensitive composition (10) is protected from low energy radiation such as UV light, by a layer of low energy absorbing materials, such as UV absorbers.
Owner:JP LAB INC

Method and apparatus for validation of sterilization process

An apparatus, system and method for verifying the achievement of a desired sterility assurance level (SAL) for components manipulated within a low-energy electron beam sterilization chamber. The components are preferably pre-sterilized and connected together in an assembly fashion which creates and maintains the sterility of the connection by subjecting the components to low-energy (less than 300 KeV) electron beam radiation. The verification is completed by measuring the sterilization dose delivered to a sensor, also known as a dosimeter, positioned within the sterilization process to simulate the components.
Owner:BAXTER INT INC
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products