Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

2341 results about "Stereophonic sound" patented technology

Stereophonic sound or, more commonly, stereo, is a method of sound reproduction that creates an illusion of multi-directional audible perspective. This is usually achieved by using two or more independent audio channels through a configuration of two or more loudspeakers (or stereo headphones) in such a way as to create the impression of sound heard from various directions, as in natural hearing. Thus the term "stereophonic" applies to so-called "quadraphonic" and "surround-sound" systems as well as the more common two-channel, two-speaker systems. It is often contrasted with monophonic, or "mono" sound, where audio is heard as coming from one position, often ahead in the sound field (analogous to a visual field). Stereo sound has been in common use since the 1970s in entertainment systems such as broadcast radio, TV, recorded music, internet, computer audio, and cinema.

Entertainment device configured for interactive detection and security vigilant monitoring in communication with a control server

InactiveUS20070256105A1Facilitate transmission and receptionClosed circuit television systemsBurglar alarmSensor arrayEngineering
Home security detectors configured with the control components of the home comprising interactive detectors enhanced to support location-awareness and home occupant-awareness and functionality. The system includes at least one motion sensor configured with communication devices operatively arranged to transmit information about any motion of occupants in the various sections of the home as part of the information about the occupancy of the home during an emergency. At least one sensor is provided in various rooms of a home each sensing a state of the home. A central communication device is coupled, wired or wirelessly, directly or indirectly, to each home sensor configured to transmit the state of the home. The number of occupants in the home are determined by at least one body heat sensor and at least one heartbeat sensor each configured with the interactive detectors to detect the presence of emergency and home occupants and to know the present situations such as their heartbeats, such that the number of occupants and their locations are determinable from the number of detected body heat and their security and safety conditions are determinable by their heartbeats. The detection method includes the steps of sensing a state of the home and transmitting the state of the home to at least a server. Images of the home are captured by at least a camera means configured with at least a MOS and/or CMOS based active sensor array for producing real-time images and stored in the server for wireless retrieval. The images ideally include at least an intruder of the home. The server is configured with a central processor for enabling controlling security vigilance monitoring and for enabling rapid distribution of detection data, voice, and other detection signals within the monitoring environment. The system establishes a network which includes configuring home audio/visual devices, media destination means such as televisions, monitors, PDAs, notepads, notebooks, MP3, wireless stereo, cell phones etc for the detection means. The control server supports video/audio servings, telephony, messaging, file sharing, internetworking, and security monitoring and allows home occupants to access and control the home network environment from any location within a controlled residential, commercial/industrial and/or non-residential, commercial/industrial environment with at least a computer means such as a cell phone.
Owner:COSTA VERDI SERIES 63 OF ALLIED SECURITY TRUST I

Multichannel sound reproduction method and device

The present invention relates to a method for selecting auditory signal components for reproduction by means of one or more supplementary sound reproducing transducers, such as loudspeakers, placed between a pair of primary sound reproducing transducers, such as left and right loudspeakers in a stereophonic loudspeaker setup or adjacent loudspeakers in a surround sound loudspeaker setup, the method comprising the steps of (i) specifying azimuth angle range within which one of said supplementary sound reproducing transducers is located or is to be located and a listening direction; (Ii) based on said azimuth angle range and said listening direction, determining left and right interaural level difference limits and left and right interaural time difference limits, respectively; (iii) providing a pair of input signals for said pair of primary sound reproducing transducers; (iv) pre-processing each of said input signals, thereby providing a pair of pre-processed input signals; (v) determining interaural level difference and interaural time difference as a function of frequency between said pre-processed signals; and (vi) providing those signal components of said input signals that have interauial level differences and interaural time differences in the interval between said left and right interaural level difference limits, and left and right interaural time difference limits, respectively, to the corresponding supplementary sound reproducing transducer. The invention also relates to a device for carrying out the above method and systems of such devices.
Owner:HARMAN BECKER AUTOMOTIVE SYST MFG KFT

Universal four-channel surround sound speaker system for multimedia computer audio sub-systems

A universal four-channel multimedia computer speaker system is connectable to audio sub-system control circuits (e.g., “sound cards”) of both the four-channel type and the conventional two-channel (stereo) type. With the audio sub-system control circuit being of a four-channel type, the universal four-channel audio system functions as a conventional multimedia computer four-channel surround sound audio system. With a four audio channel multimedia computer work and the audio sub-system control circuit being of a conventional two-channel (stereo) type, the universal four-channel audio system is configured to provide one pair of wide-band speakers (e.g., the front) with distinct audio playback according to respective right-front and left-front audio channels in a four or two audio channel multimedia computer work such as a game, music, etc. The universal four-channel audio system is configured to provide at the rear speakers distinct audio playback that are generated from the right-front and left-front audio channels in the four or two audio channel multimedia computer work. With respect to the rear speakers, the universal four-channel audio system includes a proxy audio signal component that provides respective right and left rear proxy audio signals to proximate the typical sound of actual right and left rear audio signals carried on a four audio channel multimedia computer work or simulated surround signals generated from conventional two channel multimedia work.
Owner:LOGITECH EURO SA

Digital wavetable audio synthesizer with delay-based effects processing

A digital wavetable audio synthesizer is described. The synthesizer can generate up to 32 high-quality audio digital signals or voices, including delay-based effects, at either a 44.1 KHz sample rate or at sample rates compatible with a prior art wavetable synthesizer. The synthesizer includes an address generator which has several modes of addressing wavetable data. The address generator's addressing rate controls the pitch of the synthesizer's output signal. The synthesizer performs a 10-bit interpolation, using the wavetable data addressed by the address generator, to interpolate additional data samples. When the address generator loops through a block of data, the signal path interpolates between the data at the end and start addresses of the block of data to prevent discontinuities in the generated signal. A synthesizer volume generator, which has several modes of controlling the volume, adds envelope, right offset, left offset, and effects volume to the data. The data can be placed in one of sixteen fixed stereo pan positions, or left and right offsets can be programmed to place the data anywhere in the stereo field. The left and right offset values can also be programmed to control the overall volume. Zipper noise is prevented by controlling the volume increment. A synthesizer LFO generator can add LFO variation to: (i) the wavetable data addressing rate, for creating a vibrato effect; and (ii) a voice's volume, for creating a tremolo effect. Generated data to be output from the synthesizer is stored in left and right accumulators. However, when creating delay-based effects, data is stored in one of several effects accumulators. This data is then written to a wavetable. The difference between the wavetable write and read addresses for this data provides a delay for echo and reverb effects. LFO variations added to the read address create chorus and flange effects. The volume of the delay-based effects data can be attenuated to provide volume decay for an echo effect. After the delay-based effects processing, the data can be provided with left and right offset volume components which determine how much of the effect is heard and its stereo position. The data is then stored in the left and right accumulators.
Owner:MICROSEMI SEMICON U S
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products