Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

3031 results about "Stereo image" patented technology

3D imaging system

The present invention provides a system (method and apparatus) for creating photorealistic 3D models of environments and/or objects from a plurality of stereo images obtained from a mobile stereo camera and optional monocular cameras. The cameras may be handheld, mounted on a mobile platform, manipulator or a positioning device. The system automatically detects and tracks features in image sequences and self-references the stereo camera in 6 degrees of freedom by matching the features to a database to track the camera motion, while building the database simultaneously. A motion estimate may be also provided from external sensors and fused with the motion computed from the images. Individual stereo pairs are processed to compute dense 3D data representing the scene and are transformed, using the estimated camera motion, into a common reference and fused together. The resulting 3D data is represented as point clouds, surfaces, or volumes. The present invention also provides a system (method and apparatus) for enhancing 3D models of environments or objects by registering information from additional sensors to improve model fidelity or to augment it with supplementary information by using a light pattern projector. The present invention also provides a system (method and apparatus) for generating photo-realistic 3D models of underground environments such as tunnels, mines, voids and caves, including automatic registration of the 3D models with pre-existing underground maps.
Owner:MACDONALD DETTWILER & ASSOC INC

High aspect stereoscopic mode camera and method

An aerial reconnaissance camera and method provides for generating a first image of the terrain of interest with the camera pointing angle oriented or rotated about an azimuthal axis some angular amount (theta1) to a first, typically forward orientation, i.e., forward of a cross-line of flight direction. An image is obtained of the ground at this orientation. Then the camera is rotated about the azimuthal axis to new angular value (theta2), which will typically be aft of the cross line of flight direction. An image is generated at this value. The camera is then rotated back to the value of theta1, and a second image in the forward orientation is generated. The camera is then rotated again to the value of theta2 and another image in the aft orientation is generated. This process of rotating the camera about the azimuthal axis and generating images in forward and aft orientations continues over and over. Eventually, as the aircraft flies past the terrain of interest, any given location in the terrain of interest will have been imaged from two different perspectives-forward and aft. The motion of the aircraft during the interim in combination with the values of theta1 and theta2 provide the high baseline for the stereo image pairs. By selection of suitable values for the angular separation of theta1 and theta2 (such as theta1=+10 degrees and theta2=-10 degrees) the result will be pairs of images of the terrain of interest having a large baseline, producing truly high aspect stereo images from a single camera. The method also works in a similar fashion by rotation back and forth about the pitch axis and imaging the terrain in forward oblique and aft oblique orientations.
Owner:THE BF GOODRICH CO

Linkable digital cameras for an image capture system

A system of linked digital cameras for an image capture system is disclosed. A first and second digital camera can be linked to capture a first images and a second image that are used to form a stereo image. A first data port on the first digital camera and a second data port on the second digital camera intercommunicate data between each other when the cameras are linked. The data can include the first and second image data, camera control data, and camera synchronization data. After capturing the first and second images, the image from one of the cameras can be transferred to the other camera so that both the first and second images reside in the other camera. The system allows a user who wishes to capture stereo images the ability to do so with out having to purchase two digital cameras. A compatible digital camera can be borrowed from another user for the purpose of stereo image capture. After the stereo image is captured, the user transfers both images to his camera and returns the borrowed camera. The cameras can be equipped with viewfinders that allow a user of the cameras to view the image being captured in stereo. The viewfinders can be adjustable to accommodate variations in user interpupillary distance. A digital camera operating system (OS) can be customized to enable stereo image capture, image data handling, image processing, and camera control for the linked digital cameras.
Owner:HEWLETT PACKARD DEV CO LP
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products