Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

1025results about "Dough embossing machines" patented technology

Printing semiconductor elements by shear-assisted elastomeric stamp transfer

ActiveUS8506867B2Sacrificing printing yield and accuracyIncrease chanceConfectionerySolid-state devicesEngineeringVertical displacement
Provided are methods and devices for transfer printing of semiconductor elements to a receiving surface. In an aspect, the printing is by conformal contact between an elastomeric stamp inked with the semiconductor elements and a receiving surface, and during stamp removal, a shear offset is applied between the stamp and the receiving surface. The shear-offset printing process achieves high printing transfer yields with good placement accuracy. Process parameter selection during transfer printing, including time varying stamp-backing pressure application and vertical displacement, yields substantially constant delamination rates with attendant transfer printing improvement.
Owner:X DISPLAY CO TECH LTD

Imprint method and device

An imprint process comprises the step of aligning a substrate, supported on a first support member, with a template, supported on a second support member. The substrate has at least one essentially plane surface provided with a moldable film. The template has at least one essentially plane surface provided with a relief pattern. The relief pattern is adapted to interact with the moldable film. The process further comprises the step of arranging a sealing gasket between the template and the second support member, such that a pressure cavity is defined by the second support member, the template and the sealing gasket. The process also comprises the step of applying a static gas pressure to the pressure cavity, in order to provide a pressure between the template and the substrate. The pressure is sufficient to form a pattern in the moldable film. An imprint device is also disclosed.
Owner:OBDUCAT AB SE

Formation of discontinuous films during an imprint lithography process

The present invention is directed to a template having a body including a surface with first and second regions. The first region has first wetting characteristics for a given material and the second region has second wetting characteristics for the given material. The first wetting characteristics differ from the second wetting characteristics. Specifically, the first region is formed from a surface treatment layer with a first surface energy to provide the first wetting characteristics. The second region is exposed portions of the body, typically quartz of fused silica, having a second surface energy associated therewith. The second surface energy is greater than the first surface energy to provide the second region with the second wetting characteristics.
Owner:CANON KK +1

Formation of discontinuous films during an imprint lithography process

The present invention is directed to a template having a body including a surface with first and second regions. The first region has first wetting characteristics for a given material and the second region has second wetting characteristics for the given material. The first wetting characteristics differ from the second wetting characteristics. Specifically, the first region is formed from a surface treatment layer with a first surface energy to provide the first wetting characteristics. The second region is exposed portions of the body, typically quartz of fused silica, having a second surface energy associated therewith. The second surface energy is greater than the first surface energy to provide the second region with the second wetting characteristics.
Owner:CANON KK +1

Matrix and method of producing said matrix

The invention relates to a matrix suitable for use in the replication of a plastic element having a positive microstructure, comprising a first wear-resistant layer that is supported by a carrier element, wherein the matrix comprises a heating means for supplying electrical heat energy through the wear-resistant layer or carrier element. The invention further relates to a plastic element producing machine and a method for the manufacture of a plastic element having a surface with a positive microstructure.
Owner:GYROS

Chucking system for nano-manufacturing

The present invention is directed towards a chucking system, including, inter alia, a body having a surface with a pin extending therefrom having a throughway defined therein, and a land surrounding the protrusions defining a channel between the pin and the land. In a further embodiment, the body comprises a plurality of protrusions.
Owner:CANON KK

Process and apparatus for embossing precise microstructures and embossing tool for making same

A process and apparatus for embossing thermoplastic products having precise microstructured surfaces including using a continuous press having upper and lower belts with the embossing pattern(s); feeding thermoplastic material through the press where heat and pressure are applied to form the embossed pressure microstructure, and cooling the embossed material, all while maintaining pressure. A continuous embossing tool is provided by welding segments together, the welds including interface material at the weld joint which is of a different material than the segment material to increase the tensile strength.
Owner:AVERY DENNISON CORP

Apparatus for embossing a flexible substrate with a pattern carried by an optically transparent compliant media

An apparatus for embossing a flexible substrate with an optically transparent compliant media is disclosed. The complaint media includes an optically transparent imprint stamp with an imprint pattern therein. The flexible substrate is coated with a photopolymer material. The compliant media can be connected with an optically transparent belt material to form an embossing belt or connected with an optically transparent cylinder to from an embossing drum. A coated side of the flexible substrate is urged into contact with the imprint stamp and the imprint pattern is embossed in the photopolymer material and an ultraviolet light passing through the compliant media contemporaneously cures the photopolymer material during the embossing.
Owner:APPLIED MATERIALS INC

Method and apparatus for molding components with molded-in surface texture

An automobile interior trim component includes a molded substrate laminated onto a cover sheet including a foam backing and a skin film having a surface texture. The cover sheet is preheated so the skin film is in a melted viscous liquid state above its melting temperature, and the foam backing remains in a solid elastic foam state below its melting temperature. The preheated cover sheet is mechanically pre-molded by a back mold into a front mold. Pressurized air is applied through the back mold, to blow-mold the cover sheet against the front mold, so the melted skin film reproduces a surface texture of the front mold surface while the solid foam backing acts as a buffer and air barrier layer. Vacuum is applied through the front mold surface. The mold is opened, a substrate is introduced, and the back mold then molds and thermally laminates the substrate against the foam backing of the cover sheet.
Owner:HERBERT OLBRICH

UV nanoimprint lithography process and apparatus

A UV nanoimprint lithography process and its apparatus that are able to repeatedly fabricates nanostructures on a substrate (wafer, UV-transparent plate) by using a stamp that is as large as or smaller than the substrate in size are provided. The apparatus includes a substrate chuck for mounting the substrate; a stamp made of UV-transparent materials and having more than two element stamps, wherein nanostructures are formed on the surface of each element stamp; a stamp chuck for mounting the stamp; a UV lamp unit for providing UV light to cure resist applied between the element stamps and the substrate; a moving unit for moving the substrate chuck or the stamp chuck to press the resist with the element stamps and substrate; and a pressure supply unit for applying pressurized gas to some selected regions of the substrate to help complete some incompletely filled element stamps.
Owner:KOREA INST OF MASCH & MATERIALS

Imprinting machine and device manufacturing method

An imprinting machine that brings a mold having a pattern into contact with an object and transfers the pattern onto the object includes a measurement unit that measures a position of the mold when the mold contacts the object.
Owner:CANON KK

Imprint method and device

An imprint process comprises the step of aligning a substrate, supported on a first support member, with a template, supported on a second support member. The substrate has at least one essentially plane surface provided with a moldable film. The template has at least one essentially plane surface provided with a relief pattern. The relief pattern is adapted to interact with the moldable film. The process further comprises the step of arranging a sealing gasket between the template and the second support member, such that a pressure cavity is defined by the second support member, the template and the sealing gasket. The process also comprises the step of applying a static gas pressure to the pressure cavity, in order to provide a pressure between the template and the substrate. The pressure is sufficient to form a pattern in the moldable film. An imprint device is also disclosed.
Owner:OBDUCAT AB SE

Imprint alignment method, system, and template

An improved lithographic alignment method, system, and template. The method includes creating, within a lithographic subfield, subsequent-layer features which are intentionally offset from their respective previous-layer features, where the intentional offset may vary in magnitude and direction from one subfield to the next. The system includes an imprint lithographic machine and first and second lithography templates where the templates are adapted to enable the machine to form first and second features, respectively, and where a second feature is configured to be deliberately offset from a corresponding first feature. The template set includes at least two templates, one having features which are deliberately offset from corresponding features of another template. Also, a method of manufacturing such a template set.
Owner:CANON KK

Embossing process including discrete and linear embossing elements

An apparatus for producing an embossed product including a first embossing member having a plurality of discrete embossing elements disposed in a first non-random pattern having at least one first single pattern unit. The total area of the distal ends of the discrete embossing elements in the first single pattern unit is less than about 5.0 cm2. The apparatus also includes a second embossing member having a plurality of linear embossing elements disposed in a second non-random pattern having at least one second single pattern unit. The total area of the second distal ends in the second single pattern unit is less than about 10 cm2. The second non-random pattern is coordinated with the first non-random pattern such that when engaged with each other the first single pattern unit and the second single pattern unit make up an embossing pattern single pattern unit.
Owner:THE PROCTER & GAMBLE COMPANY

Method and apparatus for imprinting microstructure and stamper therefor

A method of imprinting a microstructure comprising: contacting a stamper comprising a pattern layer with the microstructure of the order of from micrometers to nanometers in one face of the pattern layer and a substrate supporting the pattern layer with an imprinting member having a deformable layer to which the microstructure is imprinted, wherein the pattern layer is supported on a round surface having a prescribed radius of curvature of the substrate, the center of the round surface protruding towards the rear face of the pattern layer; causing the deformable layer on the imprinting member; and separating the stamper from the cured deformable layer.
Owner:HITACHI LTD

Belt-shaped mold and nanoimprint system using the belt-shaped mold

There is provided a fine pattern transfer, belt-shaped mold, with which a fine structure having a high aspect ratio can be formed rapidly and stably using nanoimprinting, and a fine pattern transfer system (a nanoimprint system) that employs this mold. According to the present invention, a nanoimprint mold includes: a belt-shaped support member; a plurality of stampers, for each of which a fine convex-and-concave pattern, to be transferred, is formed on one surface; and an adhesive member, to which the belt-shaped support member and the stampers are to be securely adhered, wherein the adhesive member includes a porous member and adhesive layers, which are deposited on either face of the porous member, for impregnating one part of the porous member, and wherein, for the porous member, a porous area that is not impregnated with the adhesive layers, is provided and positioned so as to sandwich the porous member between portions impregnated with the adhesive layers.
Owner:HITACHI LTD

Layered product for fine pattern formation and method of manufacturing layered product for fine pattern formation

Disclosed is a layered product for fine pattern formation and a method of manufacturing the layered product for fine pattern formation, capable of easily forming a fine pattern having a thin or no remaining film in order to form a fine pattern having a high aspect ratio on a processing object. The layered product for fine pattern formation (1) of the present invention used to form a fine pattern (220) in a processing object (200) using a first mask layer (103) includes: a mold (101) having a concavo-convex structure (101a) on a surface; and a second mask layer (102) provided on the concavo-convex structure (101a), wherein in the second mask layer (102), a distance (lcc) and a height (h) of the concavo-convex structure (101a) satisfy Formula (1) 0<lcc<1.0 h, and a distance (lcv) and the height (h) satisfy Formula (2) 0≦lcv≦0.05 h.
Owner:ASAHI KASEI E-MATERIALS CORPORATION

Parallelism adjustment device

InactiveUS7204686B2Enhance horizontal alignmentHigh level of freedomNanoinformaticsConfectioneryNanoimprint lithographyElectrical and Electronics engineering
A parallelism adjustment device applicable to nano-imprint lithography has an imprint unit, a carrier unit, a parallelism adjustment mechanism, and a driving source. The imprint unit has a first molding plate and an imprinting mold mounted on the first molding plate. The carrier unit has a second molding plate and a substrate mounted on the second molding plate. The parallelism adjustment mechanism has an enclosed resilient film and a fluid filled therein, and is coupled to at least one of the first and second molding plates. The driving source drives at least one of the imprint unit and the carrier unit to form contact between the mold and the moldable layer. The parallelism adjustment device is pressed via the contact to adjust parallelism for the imprint mold and the substrate and uniformly distributes the pressure between the mold and the substrate, making the molding quality of nano-imprint lithography significantly improved.
Owner:IND TECH RES INST

Pattern transfer apparatus and pattern forming method

InactiveUS20110049761A1Reduce unevennessNon-uniform film thicknessConfectioneryNanoinformaticsEngineeringSubstrate surface
The pattern transfer apparatus includes: a liquid ejection device having liquid ejection ports through which droplets of liquid are ejected and deposited onto a substrate surface while the liquid ejection device relatively moves to scan the substrate surface in a relative scanning direction; and a stamp having a stamp surface on which a pattern is formed, the stamp surface being applied to the droplets of the liquid on the substrate surface in a stamp application direction while the stamp is relatively moved with respect to the substrate, wherein when defining, on the substrate surface, strips which are straight and parallel to the stamp application direction and have widths substantially equal to diameters of the droplets deposited on the substrate surface, at least one of the strips includes the droplets which are ejected respectively from at least different two of the liquid ejection ports of the liquid ejection device.
Owner:FUJIFILM CORP
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products