Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

38results about How to "Avoid the possibility of damage" patented technology

Cleaving process to fabricate multilayered substrates using low implantation doses

A method of forming substrates, e.g., silicon on insulator, silicon on silicon. The method includes providing a donor substrate, e.g., silicon wafer. The method also includes forming a cleave layer on the donor substrate that contains the cleave plane, the plane of eventual separation. In a specific embodiment, the cleave layer comprising silicon germanium. The method also includes forming a device layer (e.g., epitaxial silicon) on the cleave layer. The method also includes introducing particles into the cleave layer to add stress in the cleave layer. The particles within the cleave layer are then redistributed to form a high concentration region of the particles in the vicinity of the cleave plane, where the redistribution of the particles is carried out in a manner substantially free from microbubble or microcavity formation of the particles in the cleave plane. That is, the particles are generally at a low dose, which is defined herein as a lack of microbubble or microcavity formation in the cleave plane. The method also includes providing selected energy to the donor substrate to cleave the device layer from the cleave layer at the cleave plane, whereupon the selected energy is applied to create a controlled cleaving action to remove the device layer from a portion of the cleave layer in a controlled manner.
Owner:SILICON GENERAL CORPORATION

Pre-made cleavable substrate method and structure of fabricating devices using one or more films provided by a layer transfer process

A method for fabricating one or more devices, e.g., integrated circuits. The method includes providing a multi-layered substrate, which has a thickness of material (e.g., single crystal silicon) overlying a first debondable surface coupled to and overlying a second debondable surface. The second debondable surface is overlying an interface region of the multi-layered substrate. In a preferred embodiment, the thickness of material having a surface region. The method includes processing the surface region of the multi-layered substrate using one or more processes to form at least one device onto a portion of the surface region. The method includes forming a planarized upper surface region overlying the surface region of the thickness of material. The method includes joining the planarized upper surface region to a face of a handle substrate. In a preferred embodiment, the method includes processing the first debondable surface and the second debondable surface to change a bond strength from a first determined amount to a second determined amount, which is capable of debonding the first debondable surface from the second debondable surface. The method includes debonding the first debondable surface from the second debondable surface to release the thickness of material and the handle substrate.
Owner:SILICON GENERAL CORPORATION

Open Frame Electronic Chassis For Enclosed Modules

An open frame chassis has a top opening and a bottom opening permitting ambient air flow there through. A plurality of modules, each enclosing electrical components which are in thermal contact with a heat sink area of their corresponding module, and each of which can be inserted to an inserted position in the open frame chassis. When the modules are inserted into the open frame chassis, ambient air may flow from the bottom opening of the chassis across the heat sink area of each module to the top opening in order to passively cool the modules and the electrical components enclosed therein. The heat sink area has fins which are separated by a distance of 9 mm to 12 mm and have a height 10 mm to 20 mm. Key pins are associated with the electrical connectors of the chassis to guide the modules into place and prevent incorrect insertion of a different type of electrical module not corresponding to the electrical connection of the chassis for that slot. Guide pins are present on the corners of the modules to mate with guide holes in the chassis to secure the module to the open frame chassis and decrease vibration. Both sides of the chassis have side openings through which the fins of the modules inserted into the end slots of the chassis may be exposed. The power modules are inserted into the end slots. The chassis has an inverted connection at one end slot to accommodate identical power modules at both end slots such that the heat sink area always faces a side opening in the open frame chassis.
Owner:SIEMENS CANADA LTD

Method and structure for fabricating bonded substrate structures using thermal processing to remove oxygen species

A method for fabricating bonded substrate structures, e.g., silicon on silicon. In a specific embodiment, the method includes providing a thickness of single crystal silicon material transferred from a first silicon substrate coupled to a second silicon substrate. In a specific embodiment, the second silicon substrate has a second surface region that is joined to a first surface region from the thickness of single crystal silicon material to form of an interface region having a first characteristic including a silicon oxide material between the thickness of single crystal silicon material and the second silicon substrate. The method includes subjecting the interface region to a thermal process to cause a change to the interface region from the first characteristic to a second characteristic. In a specific embodiment, the second characteristic is free from the silicon oxide material and is an epitaxially formed silicon material provided between the thickness of single crystal silicon material and the second silicon substrate. The method includes maintaining the interface region free of multiple voids during the thermal process to form the epitaxially formed silicon material to electrically couple the thickness of single crystal silicon material to the second silicon substrate.
Owner:SILICON GENERAL CORPORATION

Cleaving process to fabricate multilayered substrates using low implantation doses

A method of forming substrates, e.g., silicon on insulator, silicon on silicon. The method includes providing a donor substrate, e.g., silicon wafer. The method also includes forming a cleave layer on the donor substrate that contains the cleave plane, the plane of eventual separation. In a specific embodiment, the cleave layer comprising silicon germanium. The method also includes forming a device layer (e.g., epitaxial silicon) on the cleave layer. The method also includes introducing particles into the cleave layer to add stress in the cleave layer. The particles within the cleave layer are then redistributed to form a high concentration region of the particles in the vicinity of the cleave plane, where the redistribution of the particles is carried out in a manner substantially free from microbubble or microcavity formation of the particles in the cleave plane. That is, the particles are generally at a low dose, which is defined herein as a lack of microbubble or microcavity formation in the cleave plane. The method also includes providing selected energy to the donor substrate to cleave the device layer from the cleave layer at the cleave plane, whereupon the selected energy is applied to create a controlled cleaving action to remove the device layer from a portion of the cleave layer in a controlled manner.
Owner:SILICON GENERAL CORPORATION

Mobile device of inner-pipeline detection device as well as launching and receiving method

The invention provides a mobile device of an inner-pipeline detection device as well as a launching method and a receiving method of the inner-pipeline detection device by using the mobile device. The mobile device comprises a pallet, wherein the longitudinal length of the pallet is not less than the length of the inner-pipeline detection device, and the shape of the pallet enables the pallet to be capable of holding a part of the inner-pipeline detection device in the radial direction. According to the mobile device, the pipeline inner-detection device can be held by the non-magnetic pallet so that the inner-pipeline detection device can be separated from the internal wall of a launching-receiving spherical cylinder in the process of launching and receiving the inner-pipeline detection device. Therefore, the magnetic force generated between the inner-pipeline detection device and the launching-receiving spherical cylinder is reduced, the pipeline inner-detection device is conveniently launched to a predetermined position in the launching-receiving spherical cylinder, and then the position of the inner-pipeline detection device can be kept with only extracting the pallet, thereby greatly reducing the possibility of damageing the inner-pipeline detection device.
Owner:CHINA PETROLEUM & CHEM CORP +1
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products